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ABSTRACT 

Kinetic Monte Carlo (KMC) simulation methods were utilized to study the grain growth 

and sintering of nanocrystalline metal compacts.  Sintering is the process used to 

fabricate materials from powders by densifying the powder compact at elevated 

temperatures.  Recently, experimental literature has demonstrated that nanoparticles  

(< 50 nm) can be used to bond materials at dramatically lower temperatures and pressures 

while maintaining the mechanical properties of nanostructured materials.  Despite these 

promising results, the grain growth and sintering mechanisms of nanostructures are not 

fully understood. 

Simulations performed using KMC algorithms can be used to model nanoparticle 

grain growth and sintering.  Sandia National Laboratories’ new, massively-parallel, 

Stochastic Parallel Particle Kinetic Simulator (SPPARKS) code is capable of simulating 

large-scale problems of grain growth and sintering from the nanoscale to the microscale. 

This thesis focused on setting up SPPARKS on the Naval Postgraduate School’s 

high performance computing resources. The performance of SPPARKS was assessed for 

large-scale simulations of grain growth and sintering.  Using SPPARKS, the ability to 

perform coupled grain growth and sintering was demonstrated while controlling variables 

such as temperature, porosity, and grain size.  The results demonstrate the importance of 

the spatial distribution of porosity on the nanostructure evolution during grain growth and 

sintering. 
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I. INTRODUCTION 

A. MOTIVATION 

The ability to fabricate structural components from metals with a fine (micron-

sized), controlled grain size is one of the hallmarks of modern, structural metallurgy. 

Powder metallurgy, in particular, consists of powder manufacture, powder blending, 

compacting, and sintering. There is a wide range of applications for powder metallurgy.  

Powder metallurgy is important in the manufacture of heat shields for spacecraft reentry 

into the Earth’s atmosphere, linings for friction brakes, turbine disks, and metallic glasses 

for high-strength films and ribbons to name a few. All of these applications are enabled 

by materials with high yield strengths and toughness, both of which are increased with a 

reduction in grain size.  Recently, there has been an exploration of the reduction of grain 

size in metals down to the nano-scale.  One of the primary methods for fabricating 

macroscale components from nanoscale powders is by the sintering of nanosized particles 

[1].  Even though the sintering of nanoparticles is similar to the sintering of coarser 

particles, there are unique issues and challenges involved with sintering nanosized 

particles.  One major challenge in sintering of nanoparticles is to achieve the maximum 

density of the materials while retaining the properties of the nanoparticles [1].  Therefore, 

the goal of sintering nanoparticles is to minimize grain growth while densifying the 

material.  Unfortunately, many of the factors which result in densification also lead to 

grain growth and the possible loss of the desired properties of the nanomaterial.  The 

grain growth experienced during heating of the particles to the sintering temperature may 

be enough to change the properties of the nanomaterials and thus render the process 

unsuccessful.  Preventing grain growth while generating densification is critical to 

successful powder metallurgy at the nanoscale. 

A recent and related process is nanoparticle-enabled diffusion bonding (NEDB).  

The use of nanoparticle metals for diffusion bonding allows for joining at very low 

temperatures and stresses.  Ide et al. joined two copper discs using silver metallo-organic 

nanoparticles [2].  The 11 nm silver nanoparticles produced an interfacial bond 

microstructure between the copper discs that was stronger and denser than that using fine 
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silver particles of 100 nm [2].  The joints made with the silver nanoparticles had shear 

strengths of 25–40 MPa with fractures located inside the sintered silver layer.  

Conversely, the joints made with the fine silver particles had shear strengths of only 0.5–

10 MPa and fractured at the copper-to-silver interface.  Of particular importance were the 

surprisingly low pressure and temperature required to form the sintered bonds of the 

silver nanoparticles, 1 and 5 MPa and 573 K, respectively [2].  These pressures and 

temperatures are well below the values required for diffusion bonding with larger 

particles [3].  A number of recent papers have extended these results towards use in 

bonding and packing electronic devices using silver at low temperatures and pressures 

[4], [5], [6]. 

A final example of the importance of nanocrystalline metals is the production of 

metallic materials with extremely high yield stresses. According to the Hall-Petch 

equation, the strength of a material goes up considerably when the size of the particles is 

reduced to the nanoscale.  The Hall-Petch equation has the form: 

  (1) 

where  is the yield stress, 

  is the frictional (Peierls) stress required to move dislocations, 

 k is the Hall-Petch slope, and  

 D is the grain size [7].   

The yield stress is proportional to the inverse of the square root of the grain size.  

For silver, the yield strength increases from 47.26 MPa for 50 µm-sized particles to 

350.41 MPa for 50 nm-sized particles: 

  (2) 

 
. 

(3)
 

This is a 741% increase in the yield strength of the material.  Using this calculation of the 

yield strengths of a material reveals the importance of being able to sinter at the 

nanoscale.  Myers and Chawla have described the high strengths associated with a 
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reduction of grains to the nano-scale.  They revealed that a strength level of a drawn steel 

with a grain size of 10 nm was 4,000 MPa, approximately four times higher than for a 

typical high strength steel. Several reasons for the high strengths have been formulated by 

Meyers and Chawla such as dislocations pileups, dislocation network models, and grain-

boundary sliding [7].  It has been shown that the Hall-Petch slope decreases as the grain 

size is reduced.  The yield stress still goes up considerably as the grain size goes from 

100 nm to 10 nm as has been shown for copper in the work of Weertman et al. (Figure 1) 

[8].  Albert et al. were able to achieve tensile strengths in silver nanoparticle samples 

greater than 100 MPa.  These samples were sintered at lower temperatures, 125–175 °C, 

using a compressive forces of 600 N [9].  These examples show the possibilities of 

sintering nano-scaled powders. 

 

Figure 1.   Hall-Petch Relationship for Nanocrystalline Copper From [7]. 

B. CHALLENGES OF BONDING NANOPARTICLES 

Despite the promise of nanocrystalline materials, synthesis of bulk materials from 

nanoparticles is difficult for several reasons. The key challenge is to form a bulk material 

(dimension in centimeters to meters) from powder particles that are less than 100 nm, i.e., 

107 times smaller.  Sintering, hot pressing, extrusion, and even rolling can be used to 



 4 

consolidate the powders and form them into a useful shape; however, these 

manufacturing processes lead to potentially serious difficulties [1].  The first challenge 

presented with fabricating materials at the nanoscale is retaining the nanocrystalline 

structure itself.  As discussed by Fang and Wang, nanocrystals can easily experience such 

rapid grain growth during the sintering process that the nanoscale grain size cannot be 

maintained [1].  This uncontrolled grain growth is perhaps the greatest challenge to 

sintering at the nanoscale level.  

The next concern is preventing the melting of the nanoparticles.  Studies have 

shown that the melting temperature of very fine nanoparticles decreases with the size of 

the particle [10], [11], [12], [13], [14].  These papers have revealed depressed melting 

temperatures as much as 50% of the bulk material for very small (< 20 nm) particles.  

Failing to account for the depressed melting point when using conventional sintering 

temperature ranges could melt the nanoparticles, resulting in the loss of the 

nanocrystalline structure and the resulting properties. The depressed melting temperature 

of nanosized metals is not fully understood, but is likely related to the higher surface 

energy to volume ratio.  Even with this ratio known, it is difficult to predict the melting 

temperature and therefore, the temperature required for sintering at the nanoscale.   

Another challenge in producing component materials with nanoparticles is 

oxidation.  Many metals readily oxidize at low temperatures, and metallic nanoparticles 

do so even more readily due to their extremely high surface area to volume ratio.  

Aluminum is a good example of a material that oxidizes extremely rapidly.  Extra care 

must be taken to prevent the aluminum nanoparticles from oxidizing.  If the metallic 

nanoparticles oxidize prior to consolidation, then the oxide layer will interfere with or 

even prevent sintering between particles.  Several approaches include sintering in an 

atmosphere that does not contain oxygen (e.g., using an inert gas or vacuum) [9], [15], 

[16], [17], [18].  Another approach is to coat the nanoparticles with a compound that 

resists oxidation;  although, coating the nanoparticles can introduce the additional 

problem of developing and removing the coating so it does not interfere with the sintering 

process [2]. 
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C. SINTERING FOR CONSOLIDATING NANOPARTICLES 

Several solutions exist for successfully creating macroscale materials out of 

consolidated, nanoparticle powders.  As mentioned previously, one solution is sintering 

which is the surface diffusion-driven densification of powders at elevated temperatures.  

This thesis will focus mainly on the formation of component materials from nanoscale 

powders using sintering. Sintering involves the heating of a material to produce bonding 

between powder particles, which reduces the overall energy of the material.  The bonding 

that occurs during sintering strengthens the material and produces improved engineering 

properties of the compacted particles [19].  Sintering is used routinely in the fabrication 

of both metals and ceramics from powders and is, in fact, the dominant processing route 

for ceramic materials [19].  As sintering is driven by the reduction of surface area, 

nanoparticles readily sinter.  The sintering of nanoparticles has been successfully 

demonstrated at relatively low temperatures and pressures while maintaining the 

mechanical properties of the nanoparticles [1].  However, the challenges mentioned 

above (rapid grain growth, particle size-dependent melting point, oxidation of particle 

surfaces, etc.) can limit the densification and nanostructure retention in sintered nano-

powder compacts.  While sintering using micron-scale particles is well understood, there 

is still relatively little known about the physics and mechanisms of using nanoparticles to 

form larger materials for useful applications.  This thesis is centered on the theory of 

sintering at the nanoscale and using computer modeling to predict the mechanisms of 

nanoparticles sintering. 

There are many questions concerning the sintering at the nanoscale. The most 

fundamental is whether the sintering of nanoparticles is different from conventional 

sintering on the microscale.  The mechanism of nanoparticles sintering and diffusion 

bonding may well be different than at larger length scales.  The sintering densification 

rate ( sdV dt ) is a key parameter to distinguish between conventional sintering and 

sintering at the nanoscale.  The densification rate in the intermediate stage of sintering is 

given by: 
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  (4) 

where Vs is the fractional volume of the solid, 

 t is time, 

 g is a collection of geometricalgeometric terms with a value typically near 5, 

 SVγ  is the solid-vapor surface energy, 

 Ω  is the atomic volume, 

 DV is the volume diffusion coefficient, 

 k is Boltzmann’s constant, 

 T is the absolute temperature, 

 and G is the grain size [19]. 

According to the above equation, the densification rate is inversely proportional to 

the cube of the grain size and the inverse of temperature.  Albert et al. predicted the effect 

of grain size and temperature on the densification rate (Figure 2).  Smaller grain sizes and 

higher temperatures result in faster densification rates.  Albert et al. used a sintering 

pressure of 500 MPa and started at a density of 90%.  From Figure 2, at 100°C, 

decreasing the grain size from 500 nm to 5 nm increased the densification rate seven 

orders of magnitude.  The densification rate is also predicted to increase five orders of 

magnitude by raising the temperature from room temperature to 175°C [9].  Even though 

these results are pressure-assisted, the results show the increase in densification rate at the 

nano-scale. 
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Figure 2.   Densification Rate as a Function of Grain Size and Temperature From [9]. 

Fang and Wang described that the densification behavior of nanoparticles during 

sintering is different than conventional sintering with respect to the densification rate and 

the temperature range of the densification.  They stated that agglomeration, pores, and 

other variables affect sintering at all length scales, however, the effects are more 

pronounced with nanoparticles [1].  They showed that the vacancy concentration is non-

linear when particles reach the nano-scale: 

 0 exp 1V VC C
kT
γκ Ω  ∆ = − −    

 (5) 

where VC∆  is the change in vacancy concentration, 

0VC  is the initial vacancy concentration, 

γ  is the surface energy of the material, 

κ  is the curvature of the surface, 

Ω  is the atomic volume, 

k  is Boltzmann’s constant, and 

T  is the absolute temperature [1]. 
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Figure 3 shows the vacancy concentration as a function of particle size.  As the particle 

size decreases, the vacancy concentration deviates from the linear model.  The horizontal 

axis is 1 *d , which is related to the particle size and equal to 
kT
γκΩ

− .  The diffusivity 

term, Dv, is increased as the vacancy concentration increases.  Therefore, the 

densification rate increases as the particle size gets smaller. 

 

Figure 3.   Vacancy Concentration as a Function of Grain Size From [1]. 

In addition to the grain size, temperature is an important parameter for sintering.  

The sintering temperature is the range of temperatures when bonding occurs between the 

particles.  The homologous temperature is the sintering temperature of a material 

normalized by the absolute melting temperature.  According to German, the homologous 

temperature during sintering is between 0.5 and 0.8 for most materials [19].  From the 

literature above, the homologous temperature for silver nanoparticles ranges from 0.3–0.5 

based on a melting temperature of 1,234K.  As stated previously, the melting temperature 

of nanoparticles is depressed from the melting temperature of the bulk material.  

Therefore, the lower melting point of nanoparticles results in a different temperature 

range for sintering with nanoparticles vice with microparticles. 
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Both grain growth and sintering are important when bonding metal powders. Fang 

et al. described that the key to sintering nanoparticles as the ability to limit grain growth 

while encouraging sintering.  Grain growth is important and can dominate the processing 

of nanomaterials [1].  Therefore, understanding the competition between grain growth 

and sintering is vital to ensuring the proper sintering of nanomaterials.   

D. IMPORTANCE OF COMPUTER SIMULATIONS 

Computer simulations of sintering allow the examination of the fundamental 

processes of grain growth and sintering and their interplay.  Using computer simulations  

is important for decoupling the individual, physical mechanisms from each other.  An 

example of the difficulties of sintering nanoparticles in physical experiments is the 

growth of the grains during the heating process from room temperature to the sintering 

temperature [1].  Grain sizes of 10 nm could grow considerably by the time sintering 

actually begins, thus complicating the ability to understand the actual sintering 

mechanisms at the 10 nm particle scale.  

Decoupling the processes of grain growth and sintering is relatively more 

straightforward using computer simulations.  This thesis will show how simple it is to 

isolate the process of grain growth or sintering.  Other parameters can be varied utilizing 

computer simulations without affecting other parameters.  For instance, the grain growth 

and sintering temperature can be set without changing the rates for pore migration or 

annihilation, which are dependent on the temperature in physical experiments.  

Conversely, the probability of pore migration and annihilation can be determined on the 

sintering of nanoparticles without changing the temperature.  It is clear from these 

examples that using computer simulations is important to understanding the individual 

parameters on grain growth and sintering and their overall effect on the system. 

Another important reason for using computer simulations is the ability to access 

physical and microstructural variables which are extremely difficult to control or measure 

experimentally.  Several important parameters with grain growth and sintering are the 

grain size and neck size.  As described in the next section, the grain size is important in 

determining the rate of grain growth and the neck size controls the rate of sintering and 
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densification of the system.  Both parameters are difficult to access during experiments 

while sintering is occurring, but computer simulations allow these parameters to be 

recorded throughout the simulation, in three dimensions, and at any length scale.  The 

density can also be recorded throughout the simulation, which allows for the 

densification rate of the particles during sintering.  Determining the density during 

sintering experiments is difficult and measuring the spatial distribution of the porosity is 

exceptionally difficult, particularly at the nanoscale. 

Simulations can also examine the effects of various physical parameters on the 

same initial nano- or microstructure.  For instance, a simulation can be run with grain 

growth and sintering and stopped at a predetermined time (e.g., particular density or grain 

size).  The simulation can then be restarted from the end of the previous simulation and 

parameters such as temperature changed to determine the effects of changing one 

parameter on the rest of the simulation.  In addition, simulations can be extended beyond 

the end time if more data is required.  By saving the final data, a new simulation can be 

started without the need to start from the beginning.  The ability to begin numerous 

simulations with identical starting microstructures is also extremely useful.  All of these 

abilities are extremely difficult to accomplish in actual experiments and often impossible.  

For example, starting numerous experiments from identical microstructures is impossible 

in laboratory experiments.  Finally, the ability to run simulations in parallel allows for 

multiple results by changing a few parameters at a time.   

E. IMPORTANCE OF KINETIC MONTE CARLO 

There are several methods available to simulate grain growth and sintering of 

particles.  One method is molecular dynamics.  Molecular dynamics (MD) simulations 

generate information at the atomic scale.  This includes a comprehensive tracking of all 

atomic positions and velocities from which detailed defect structures and system 

thermodynamics can be calculated [20].  However, MD by itself is not sufficient to study 

sintering because the time scale is too short (e.g., 50 nanoseconds is a very long MD 

simulation, while sintering proceeds in minutes to hours).  MD has been successfully 

used to determine diffusivities that can be incorporated into meso-scale simulation 
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techniques such as kinetic Monte Carlo (KMC) [21].  The finite element method is useful 

for solving problems in solid mechanics, heat transport, and other fields.  However, FEM 

is primarily a continuum technique and is not well-posed, by itself, to simulate the 

microstructural mass transfer and evolution inherent in the sintering process [21].  

Therefore, a method situated between the scope of molecular dynamics and finite element 

methods is required. 

Kinetic Monte Carlo is an ideally suited simulation technique for modeling grain 

growth and sintering.  Grain growth and sintering simulations require many atoms or 

particles, long simulation times, and high temperatures.  If a simulation needs 1000 

particles to adequately model sintering, then there needs to be 10 particles per side of a 

cubic simulation volume.  In order to adequately model the physics of a particle at the 

quasi-continuum scale, approximately 10 voxels (three dimensional pixels) are required 

across each grain. This results in a cube that has 100 sites per edge, as shown in Figure 4, 

which is represented by a simulation volume with 106 voxels, a very manageable size 

simulation for even a good lap-top computer.  A voxel is defined as the basic three-

dimensional cube in the simulation volume and is analogous to the two-dimensional 

pixel.  A particle needs to have a diameter of at least 10 voxels to accurately model the 

grain growth and sintering of the grains.  If the side of the model volume is set at 500 nm, 

then each voxel is 5 nm across and each particle has a diameter of 50 nm.   

 

Figure 4.   Computer Simulation Volume Representation. 
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Based on experimental data, nanoparticles lose their nanoscale properties at 

approximately 100 nm in average diameter [1].  In order to capture the transition between 

nanoscale effects and microscale sintering and grain growth processes it is essential to 

start with nano-size crystals (< 50 nm) and have them coarsen to a micron-sized particle 

(> 100 nm) during the simulation.  Modeling this transition results in a large increase in 

the number of sites required per side.  For the example in Figure 4, the minimum number 

of 50 nm particles would be 10 per side if the side is set at 500 nm.  This results in 1,000 

grains in the volume.  Growing the grains to 100 nm would result in five grains per side 

for a total of 125 grains.  Increasing the volume allows for smaller grains and the ability 

to sufficiently grow the grains to micron-sized particles.  If each side had 500 sites, then a 

voxel would be 1 nm on a side for a 500 nm sized simulation.  Having a diameter of 10 

voxels, 10 nm particles could be simulated.  This would result in 50 particles per side for 

a total of 125,000 particles.  Sintering to a particle size of 100 nm would result in 125 

grains.  Therefore, increasing the number of sites per side from 100 to 500 allows for 10 

nm grains to be coarsened to 100 nm vice the larger 50 nm starting grain size.  To give an 

idea of the simulation sizes, silver is used as the sintering metal.  For silver, the number 

of atoms per 1 nm3 is given by: 

 
323

3 3 7 3

6.023 10 10.49 58.573
107.87 1 10

atoms x atoms g mol cm atoms
nm mol cm g x nm nm

      = =      
      . 

(6)
 

This results in 7.32 x 109 silver atoms per 5003 site simulation box.  A 5003 site 

simulation would only contain 1.31 x 10–12 grams of silver.  In order to simulate a single 

gram of silver, over 4.5 million sites per edge would be required. 

The simulation sizes required to model sintering presents a unique challenge for 

computer simulations.  The ability to rapidly and accurately model grain growth and 

sintering is vital to generating useful results.  KMC algorithms have traditionally been 

run on serial codes, which choose sites at random one after the other.  This serial 

approach to KMC slows down the process and limits the size problems that can be run.  

In order to speed up the process and run larger simulations, Sandia National Labs 

developed the ability to implement KMC in parallel.  Massively parallel KMC solvers 

enable larger problems to be simulated accurately and efficiently due to the large number 
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of processors that can be used.  Sandia developed on open-source code known as the 

Stochastic Parallel Particle Kinetic Simulator (SPPARKS), which can partition the 

simulation across numerous processors, communicate information between processors, 

and output snapshots of the simulations at predetermined times [22]. The Sandia National 

Laboratories grain growth and sintering (SGGS) code was written by Dr. Veena Tikare 

and Christina Garcia Cardona as an add-on to SPPARKS. 

F. THESIS OBJECTIVES 

The work in this thesis assesses the potential of the SPPARKS KMC code to 

simulate grain growth and sintering. The objectives of this thesis are as follows: 

1. Learn and set-up the SPPARKS code at Naval Postgraduate School (NPS). 

The SPPARKS code requires the identification of high performance computing 

resources, compilation and queuing on those resources, and means for handling the large 

input and output data all on the resources available at NPS. 

2. Assess the performance of the SPPARKS code at NPS for large-scale 

simulation of grain growth and sintering of nano-scale materials. 

This objective will quantitatively assess the computational performance of the 

SPPARKS code on large materials simulations using NPS resources identifying limits of 

simulation size, time, and sensitivity of results to simulation size. 

3. Identify and test key physical variables required to properly model grain 

growth and sintering using kinetic Monte Carlo codes such as SPPARKS. 

While SPPARKS has been used successfully for basic grain growth modeling and 

for sintering simulations, we need to identify which physical parameters are currently 

included in the model and which are not but should be in the future.  An assessment of 

the handling and accuracy of these parameters will also be addressed. 
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II. BACKGROUND 

A. SINTERING THEORY 

1. Overview 

Sintering is the process of consolidating powder particles into a dense solid by 

activating surface diffusion at high temperatures.  Powders are used because they have 

fluid-like characteristics which allows shaping or molding under a wide range of stresses 

[19].  Sintering can be conducted on numerous materials including ceramics, metals, and 

plastics.  The bonds formed during sintering reduce the surface energy of the particles by 

reducing the free surface areas of pores between particles.  As the heating process is 

continued the pore volume reduces and the density goes up.  Increased density and 

reduced pore volume is desirable during sintering.  Depending on the application, 

shrinkage caused by these processes may be not be desirable [19].   

Sintering has many advantages for producing materials from powders with 

desirable properties.  As described above, the chief advantage of sintered materials is that 

the grain size is set by the powder size and generally much smaller than can be achieved 

by mechanical metallurgy methods.  Another advantage of sintering includes the high 

purity and uniformity of the initial material, and the preservation of this purity throughout 

the process.  A final advantage of sintering is the ability to reproduce the results due to 

the control of the initial grain size and sintering conditions, such as pressure and 

temperature.   

One aspect of sintering that is important is the distinction between densification 

and coarsening.  Densification is a critical aspect of sintering.  In order to achieve 

improved properties, the sintered particles will likely need to be densified from the green 

density of about 65–75% to a final density over 90%.  Sintered materials result in a 

reduction of surface area, grain size increase, and compact strengthening through a 

process known as coarsening [19].  Coarsening is characterized by the grains growing 

larger, and smaller pores coalescing to form larger pores.  Many materials exhibit both 

densification and coarsening throughout the sintering process.  Coarsening is favored 
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over densification when the grain size is small and the pores are large with a high 

coordination number.  Developing the ability to densify the material, coarsen the 

compact, or a combination of the two is important to developing a final product with the 

desired engineering properties. 

The chief challenge in sintering materials for all powder sizes is complete 

densification.  Failure to achieve a fully-dense material can seriously degrade the 

mechanical properties of the component material.  Initially, a loose compact of particles 

has a green density of about 60–74% with the maximum given by:  

 Green Density Maximum

3

3

44
3 0.7405

16 2
sphere

cube

rVolume
Volume r

π 
 
 = = =

.
 (7) 

For many applications the final desired density is between 90–95%.  In order to achieve 

the desired densification, the driving force for mass transport must be maximized.  The 

key driving force for mass transport during sintering is the sintering stress. 

2. Sintering Stress 

The sintering stress is important in describing the rate of sintering at each stage.  

The stress associated with sintering is due to the curved surfaces of the individual 

particles.   The sintering stress is given by the Laplace equation as: 

 
1 2

1 1
R R

σ γ
 

= + 
 

 (8) 

where γ  is the surface energy, and 

R1 and R2 are the principal radii of curvature for the surface (Figure 5). 

Figure 5 shows the principle radii of a curved surface at a general point.  According to 

German, the stress depicted in Figure 5 is tensile because the radii are located inside the 

mass (surface curvature is convex).  For radii outside the mass, the stress is compressive 

and the sign is negative (surface curvature is concave).  A flat surface has infinite radius 

and is stress free [19].  The driving force for sintering is to flatten the surface in order to 

reduce the sintering stress.  Therefore, surfaces with bumps or dips will flatten over time 

as atoms are removed or deposited at the surface.   
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Figure 5.   Principle Radii of a Curved Surface From [19].  

From Equation 8, the sintering stress is highest for small particles and decreases 

as the particle size gets larger.  Figure 6 shows the sintering stress as a function of the 

grain size.  The sintering stress increases four times when the grain size is reduced from 

20 nm to 5 nm.  Therefore, the driving force for very small grains (< 20 nm) is much 

larger than for micron-sized grains (> 100 nm).  

 

Figure 6.   Sintering Stress as a Function of Grain Size. 
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Figure 7 shows the sintering of two spherical particles of equal size and diameter, 

D.  The neck is defined as the circle of diameter, X, formed by the bonding of the two 

spherical particles.  As an example, the neck growth between two spherical particles can 

be quite rapid early in the sintering process.  German states that the stress given by two 

spherical particles of equal radii during sintering is: 

 
.
 (9) 

If radius of the neck is approximated as , then the curvature of the neck results in 
the following  sintering stress: 

  (10) 

where X is the neck diameter [19].  The smaller neck diameter results in extremely large 

sintering stresses and the driving force for sintering is high.  As sintering progresses, the 

neck size becomes larger and the sintering stress goes down.  The increase in grain size 

will also lower the sintering stress and reduce the driving force for sintering. 

 

 
Figure 7.   Sintering Profile for Two Spherical Particles From [19]. 

From Equation 10, the stress gradient in the neck is large due to the sign change 

in the radius of the circles over a short distance [19].  The pores can have concave or 

convex curvature (indicated by P in Figure 7).  The second term in the above equation is 

positive if the pore is convex and negative if the pore is concave.  From Equation 10, it is 

evident that the first term is dominant at small grain sizes and large pores, while the 
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second term is dominant at larger grain sizes and small pores.  For pressure-assisted 

sintering, the pressure term becomes dominant as the pressure acts to close pores and 

densify the mixture while minimizing grain growth [19].  There are many factors 

affecting the sintering stress, and the stress depends on these factors differently as the 

sintering progresses through the stages. 

3. Stages of Sintering 

There are four main stages of sintering.  Figure 8 shows the progression of 

sintering from a loose powder, to the neck growth during the initial stage, to the 

densification in the intermediate stage, and finally to the decrease in pore size and grain 

growth of the final stage.  Table 1 lists the sintering stages and the key parameters 

associated with each stage.  Figure 9 shows the pore evolution of the pores during 

sintering.  The pores begin as a series of connected spaces between the particles and 

eventually become closed off as the particles densify.  The convention for describing the 

pores is initially the pores are open and become closed as the material densifies and the 

pores become isolated from each other. 

 

Figure 8.   Stages of Sintering From [19]. 
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Figure 9.   Pore Structure Evolution During Sintering From [19]. 

The first stage of sintering is the adhesion, rearrangement, and repacking of 

particles.  Particle adhesion occurs spontaneously as the particles are prepared for 

sintering.  The particles then rotate and repack to obtain a higher green density and to 

lower the energy of the grain boundary structure.  The grains rotate and twist in response 

to unbalanced surface energies, inhomogeneous packing coordination, and different 

crystallographic orientations [19].  The initial coordination number of each grain is 

approximately seven with a green density of approximately 64%, and the coordination 

number increases to a maximum of 14 as shrinkage and densification occur. 

 

Stage Process Surface Area 
Loss Densification Coarsening 

Adhesion Contact 
formation 

Minimal unless 
compacted at 
high pressure 

None None 

Initial Neck Growth Significant (up 
to 50% loss) Small at first Minimal 

Intermediate Pore rounding 
and elongation 

Near total loss 
of open 
porosity 

Significant 
Increase in 

grain size and 
pore size 

Final 
Pore closure, 

final 
densification 

Negligible 
further loss 

Slow and 
relatively 
minimal 

Extensive grain 
and pore 
growth 

Table 1.   Stages of Sintering From [19].  
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The second stage of sintering is the initial stage or neck growth.  During this 

stage, the necks formed between the particles grow as the particles are heated.  The 

temperature required to conduct sintering is between 50% and 80% of the material’s 

melting temperature, which can be quite high for some materials such as metals.  Because 

the necks are extremely small, they grow independent of each other during the initial 

stage.  The neck growth stage ends when the necks begin to interact and the ratio of neck 

diameter to particle diameter is approximately 0.3.  Neck growth is important because it 

can be linked to other parameters such as shrinkage, surface area, and density [19]. 

The intermediate stage is the most important stage for densification.  It is 

characterized by the simultaneous pore rounding, densification, and particle grain growth 

[19].  The densification rate was given by Equation 4 and shows that smaller grains aid in 

the densification by increasing the rate as 1/G3.  There is rapid grain growth at the end of 

the intermediate stage due to the diminishing pore pinning effect as the pores shrink from 

a cylindrical shape to a spherical shape and occupy less of the grain boundary area [19]. 

The final stage is characterized by increasing density as the pores close and the 

open pore percentage goes down.  The open pores begin to close at approximately 15% 

porosity and are completely closed by 5%.  The final stage also exhibits Ostwald 

ripening, where larger pores grow at the expense of smaller pores [19].  The final stage is 

a slow process compared to the first three stages.  The final stage sintering stress (σ ) is a 

function of both the grains and the pores and is given by the following equation: 

  (11) 

where G is the grain size 

SSγ  is the solid-solid grain boundary energy, 

SVγ  is the solid-vapor surface energy, and 

pd  is the pore size [19]. 

The rate of grain growth is given by: 
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  (12) 

where  is a geometric constant that relates the pore spacing and the grain boundary 

curvature and is typically near unity, 

 is pore mobility, and 

 is grain boundary mobility [19]. 

4. Mass Transport Mechanism 

The mass transport mechanisms describe the movement of mass in response to the 

driving force of sintering.  There are two classes of mass transport: surface transport and 

bulk transport.  The two classes are composed of several mass transport mechanisms at 

the atomic level (Table 1).  Conventional sintering involves the motion of vacancies for 

describing the phenomenon of pore elimination.  Vacancies and atoms can move by 

surface diffusion, evaporation-condensation, grain boundary diffusion, viscous flow, or 

volume diffusion.  The key difference between surface and bulk transport is the 

densification or shrinkage of the particles, which does not occur during surface transport 

mechanisms [19]. 

Category Mechanisms Involved 
Surface Transport Evaporation-Condensation 

Surface Diffusion 
Volume Diffusion 

Bulk Transport Plastic Flow 
Grain Boundary Diffusion 

Volume Diffusion 

Table 2.   Mass Transport Mechanisms From [19]. 

Neck growth occurs during the surface transport processes due to the movement 

of atoms from the surface of the particles to the neck surface.  Because the atoms come 

from the surface of the particles and not the interior, there is no densification or 

shrinkage.  The dominant mechanisms for surface transport are surface diffusion and 

evaporation-condensation.  Surface diffusion dominates during sintering of most metals 

at low temperatures [19].  Evaporation-condensation is not as prominent and does not 
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occur in metals.  Volume diffusion can occur but the transport of mass is extremely slow 

compared to the other mechanisms because the atoms must move through the interior of 

the particle vice the surface of the particle [19]. 

Bulk transport mechanisms also contribute to neck growth, but result in the 

densification of the particles due to the atoms originating at the interior of the particles 

and depositing at the neck.  Volume diffusion, grain boundary diffusion, plastic flow, and 

viscous flow all contribute to bulk transport.  Plastic flow usually occurs early in the 

heating process while grain boundary diffusion is important to the densification of 

crystalline materials.  As a general rule, the bulk transport mechanisms are more active at 

higher temperatures due to the movement of atoms within the interior of the particles vice 

on the surfaces.  Only those mass transport phenomena associated with the sintering of 

metals will be discussed. 

a. Surface Diffusion 

The first diffusion mechanism is surface diffusion.  Surface diffusion is 

dependent on temperature and crystal orientation.  Typically, the surface of a particle is 

not smooth and contains elements such as kinks, ledges and vacancies, where atoms can 

be easily removed or deposited.  There are three steps for surface diffusion: 1) breaking 

of atomic bonds, 2) random atomic motion, and 3) the reattachment of the atoms to a new 

surface.  The movement of the atoms across the surface of the particles is extremely fast 

and the limiting mechanism is the breaking or making new atomic bonds. The surface 

diffusion energy determines the rate of the slowest step and is a function of temperature. 

Surface diffusion increases as the temperature is increased and grain size is reduced 

because the amount of surface defects increases which leads to more surface diffusion 

[19].  Since the surface diffusion activation energy is typically lower than the other 

activation energies, surface diffusion occurs at lower temperatures and is the most 

prominent mechanism while the sintering temperature is reached. 

During surface diffusion, the atoms move from one surface site to another 

site.  Therefore, surface diffusion does not result in densification.  This makes surface 

diffusion undesirable in processes where densification is important, but highly desirable 
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when shrinkage is unfavorable.  When densification is desired, rapid heating to the 

sintering temperature is one method of minimizing the mass transport due to surface 

diffusion.  As sintering progresses through the stages, surface diffusion becomes less of a 

factor in mass transport.  It still plays a role in pore migration and can act in concert with 

other mass transport mechanisms later in the sintering process. 

b. Volume Diffusion 

Volume diffusion is the movement of vacancies through the lattice 

structure of a particle.  The rate of volume diffusion is dependent on temperature, 

composition of the particles, and curvature or pressure for pressure-assisted sintering.  In 

metals, the temperature is the key factor in determining the diffusion rate; however, as 

noted by Fang, the diffusion rate can also be increased in nanocrystalline compacts.  

Volume diffusion depends on three main paths.  The first vacancy path is from the neck 

surface through the particle interior and onto the particle surface.  This path results in 

mass transport to the neck surface since mass flows in the opposite direction of 

vacancies.  There is no densification as the mass originates at the particle surface and is 

deposited onto the neck. German refers to this path as “volume diffusion adhesion” to 

avoid confusion with volume diffusion paths associated with densification [19]. 

The second volume diffusion path is the flow of vacancies from the neck 

surface to the interparticle grain boundary.  This path results in densification as the 

vacancy is removed from the grain boundary where it is replaced by an atom.  The result 

is the shifting of the center of mass of the particle towards the grain boundary and a 

decrease in the distance in the centers of mass of the neighboring particles.  A decrease in 

the distance between centers of mass is one method of describing densification. 

The third and final volume diffusion path is the annihilation of vacancies 

by dislocation climb.  The vacancies are eliminated by the removal of the vacancy from 

the interior of the particle to the surface.  The vacancy removal increases the density of 

the particle in the process. 
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Temperature controls the volume diffusion rate by determining the 

concentrations of vacancies in the particles.  The concentration of vacancies is also 

controlled by the curvature of the particles and can be estimated as: 

 0
1 2

1 11C C
kT R R
γ  Ω

= − +  
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 (13) 

where 0C  is the equilibrium vacancy concentration, 

γ  is the surface energy, 

Ω is the atomic volume, 

k is Boltzmann’s constant, and 

T is the absolute temperature, and 

R1 and R2 are the radii of the particles [19]. 

As the grain sizes get smaller, the vacancy concentration departs more from the 

equilibrium concentration.  The vacancy concentration is higher than equilibrium for a 

concave surface and less than equilibrium for a convex surface.  The flow of mass is from 

the particle (lower vacancy concentration) to the neck (higher vacancy concentration) 

because the particle surface is convex and the neck surface is concave.   

Volume diffusion is generally not as common as surface diffusion and 

grain boundary diffusion.  The activation energy of volume diffusion is higher than the 

activation energies of the other two.  Even though it is not as common, volume diffusion 

can occur late in sintering with undesirable results.  As sintering progresses, the pores 

become isolated and almost spherical in shape.  If two pores of different sizes are near 

each other, a vacancy gradient exists and the vacancies move from the small pore to the 

large pore until the small pore is eliminated.  This results in one large pore and 

effectively coarsens the pore.  Preventing grain growth is also important for conserving 

the grain boundary density; grain boundaries serve as the primary vacancy annihilation 

sites [19].  Densification can be achieved by the movement of pores to grain boundary 

sites. 
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c. Grain Boundary Diffusion 

Grain boundary diffusion has an activation energy intermediate between 

surface diffusion and volume diffusion.  Grain boundary diffusion is active due to the 

interfaces formed between sintered particles.  As the neck grows, the grain boundaries 

grow and grain boundary diffusion becomes important.  It is a contributing factor to 

densification of metals because the grain boundaries act as sinks for vacancies and result 

in the mass transport into the particle.  This is particularly important for nanocrystalline 

compacts because the number of grain boundaries is much greater than for larger 

particles. 

Sintering is limited if the grain boundary activation energy is too high.  As 

sintering progresses, new grain boundaries are formed and the dihedral angle is high.  A 

large dihedral angle is conducive to continued sintering and growth of the neck.  As the 

dihedral angle becomes lower and the generation of grain boundaries becomes 

unfavorable, sintering is inhibited and can be described by the equation showing the 

balance between the neck size, X, and grain size, G, where: 

 sin
2

X G φ
=

.
 (14) 

Once the equilibrium dihedral angle has been reached, any further neck growth is due to 

grain growth [19]. 

Finally, it is important to consider the role of grain growth when sintering 

materials.  Grain growth occurs in metals at about half of the melting temperature due to 

the increase in grain boundary mobility [23].  In order to reduce the energy of the system, 

grains tend to form triple junctions, where three grains meet.  The angle associated with 

the triple junction is 120°.  At this angle, grains contain six neighbors and the energy is 

minimized.  If a grain has fewer than six boundaries, each boundary is concave inwards 

and the grain will shrink.  Grains with more than six boundaries will grow until the 

number of boundaries is six.  Therefore, at elevated temperatures, larger grains will grow 

at the expense of smaller grains until the energy of the system is minimized.  Grain 

growth must be considered because the sintering temperature and grain growth 

temperature are similar. 
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III. METHODS 

A. KINETIC MONTE CARLO SIMULATION 

The kinetic Monte Carlo (KMC) method is useful in simulating the kinetic and 

thermodynamic behavior of particles at a larger scale. The method can simulate grain 

growth and sintering on any spatial and temporal scale [21].  Because the KMC method is 

stochastic in nature, it is able to model processes that also behave stochastically, such as 

atomic diffusion or chemical reactions [21].  Instead of looking at the atomic level, the 

KMC method is able to model particles on the order of tens to millions of atoms, and to 

accomplish it on larger time scales.  This thesis focuses on the utilization of the KMC 

method on grain growth and sintering because of its ability to model systems over a range 

of size and time scales.  Particularly, this thesis is concerned with the ability of 

SPPARKS to adequately simulate the physics of grain growth and sintering. 

Before continuing with the discussion of the operation of SPPARKS, the basics of 

MC simulations will be discussed.  A basic understanding of MC methods is required to 

understand how SPPARKS works and to understand why KMC is suitable for simulating 

grain growth and sintering of particles. 

1. Monte Carlo Ising Model 

The most basic MC model is the Ising Model or two-state Potts model.  The Ising 

model consists of a system containing two states.  For simplicity, the two states 

considered will be described as spins of values zero and one.  The basic premise behind 

the Ising model is whether a spin of one value will “flip” to the other value or remain 

unchanged.  The probability of whether a spin will flip is based on several factors.  When 

looking at simulations of grain growth, the flipping of a spin indicates that one grain is 

growing while the adjacent grain is shrinking.  Consider a sight that has a spin of zero.  

This site is surrounded by eight nearest neighbors with like and unlike spins.  Figure 10 

shows the configuration of the sights. 
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1 0 1 

0 0 1 

1 0 1 

Figure 10.   Ising Model Configuration With Eight Nearest Neighbors. 

The site in the center of Figure 10 is a zero and it has three nearest neighbors with 

spins of zero and five neighbors with spin of one.  There are two methods to determine 

the process of flipping the spin.  The first method is Kawasaki dynamics where the site is 

randomly swapped with a nearest neighbor.  If the site is swapped with a spin of zero, 

then nothing happens because the energy of the system does not change and the both sites 

remain at zero.  If the site is randomly swapped with another site containing a one, then 

the configuration looks like Figure 11. 

1 0 1 

0 1 1 

0 0 1 

Figure 11.   New Ising Model Configuration Using Kawasaki Dynamics. 

The center site now has a value of one and the bottom left corner has a value of 

zero.  The energy of the system (E) is given by the number of unlike neighbors for the 

center site and is given by: 

 ( )( )
8

1 1 1

1 1 , unlike neighbors
2

N n

i j
i j i

E q qδ
= = =

= − =∑∑ ∑  (15) 

where  N  is the total number of sites, 

n  is the number of neighbors (8 for a two dimensional grid), 

iq  is the state of the current site, 

jq  is the state of the j -th neighbor site, and 

δ  is the Kronecker delta with ( ) 1i jq qδ = =  and ( ) 0i jq qδ ≠ = [24]. 
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Equation 15 results in unlike neighbors contributing to the energy of the system, while 

like neighbors contribute no energy.  The goal if KMC is to reduce the value of Equation 

15.  The change of energy in the system is calculated using the following formula [25]: 

 0final initialE E E∆ = − ≤ . (16) 

For this example, the energy of the system went from 5 to 4.  Therefore, the 

energy of the system is reduced and the center site will flip to the new spin and remain a 

zero.  The final configuration for the system will look like Figure 11.  The Kawasaki 

model conserves the total number of each kind of spin (e.g., the number of spins with 

values of zero and one remain constant).  The new configuration has produced a larger 

grain size of ones on the right side of the box.  The number of connected sites with values 

of one went from three to four.  Even though the grains appeared to grow, the Kawasaki 

dynamics is more a method for simulating ordering processes rather than simulating grain 

growth. 

Glauber dynamics are better suited to simulate grain growth because the total 

number of sites with a particular spin is not conserved.  This means that the overall 

system can increase in the number of zeros or ones instead of staying constant.  Looking 

at the above example will show why this concept is important for grain growth.  In 

Glauber dynamics, a site is chosen at random and then the spin of the site is chosen at 

random.  If the site in Figure 11 is chosen to be a zero, then nothing happens because the 

site has not changed spins and the energy of the system is unchanged.  If the site is given 

a spin of one, then the system becomes the configuration seen in Figure 12. 

1 0 1 

0 1 1 

1 0 1 

Figure 12.   New Ising Configuration Using Glauber Dynamics. 

The next step is to determine the change in energy.  The original system had five 

unlike neighbors, while the new site has three unlike neighbors.  Therefore, the energy of 

the system has gone down by two and the site remains a one.  Therefore, the grain on the 
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right of the box has become larger at the expense of the other grain.  If the same site is 

chosen again and given a spin of zero, the energy of the system would go up and the site 

would remain a one. 

The simulation of grain growth by the Ising model at finite temperatures requires 

the addition of a probability transition function.  The probability transfer function 

accounts for the ability of a site to change spin values if the energy goes up.  This ability 

to flip spins when the energy goes up is required to model the behavior of particles with 

an increase in temperature, thereby increasing the activation energy of the particle.  The 

probability of a spin change is given by: 

 ( )
1 0

exp 0

if E
P E E if E

kT

∆ ≤
∆ = −∆  ∆ > 

 

 (17) 

where kT is the thermal energy of the simulation [25].  Therefore, if the thermal energy is 

greater than zero, there is a finite probability that a spin flip with a positive change in 

energy will be accepted.  For example, if the change in energy is three and kT is set at 2, 

the probability of flipping spins is  

   (18) 

This probability is compared to a random number generated between one and zero.  If the 

probability of Equation 18 is greater than the random number, then the spin will flip.  If 

the probability is less than the random number, the original spin will be retained. 

There are several lattice types that can be used with the Ising model.  The first 

distinction is whether the lattice sites are arranged in two dimensions or three dimensions.  

The above examples are lattice sites arranged in two dimensions with eight nearest 

neighbors.  The number of neighbors can be varied from four to as many as is needed in 

two dimensions, but normally four or eight are used.  If a two dimensional triangular 

lattice is chosen, then the number of nearest neighbors will be six.  For three dimensions, 

the number of nearest neighbors can be six first nearest neighbors or twenty six first, 

second, and third nearest neighbors. 
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The appropriate choice of boundary conditions is another key aspect to KMC 

simulations.  The boundary conditions are required for sites lying on the boundary of the 

simulation volume and to ensure continuity throughout the model.  The sites on the edge 

of the simulated area will have fewer neighbors than the interior sites.  One common 

boundary condition is the mirroring of the boundary.  In this case, the boundary sites are 

mirrored and the site has the required number of sites.  A popular choice of boundary 

conditions is the periodic boundary condition.  In this case, the sites on the opposite 

boundary are wrapped to effectively create the sites on the outside of the boundary.  This 

boundary condition is easy to implement.  A variant of the periodic boundary condition is 

the skew-periodic boundary condition.  It is used when simulating flat boundaries that 

have a non-perpendicular intersection angle with the boundary [25].  The edge of the 

simulation area is wrapped with an offset so the flat area lines up.  This results in a 

continuous flat boundary. 

The basic algorithms used to determine the outcome of the Ising Model are given 

in Figures 13 and 14.  Figure 13 contains the algorithm for Kawasaki dynamics and 

Figure 14 contains the algorithm for Glauber dynamics.  Both Kawasaki and Glauber 

dynamics algorithms allow for the array of sites to be saved as a snapshot.  These 

snapshots can be viewed and analyzed during post simulation analysis.  The choosing of 

sites and spins are random, and for large simulations run for long times, the number of 

random numbers generated can be large.  If the random number generator has a low 

repeat signature or does not truly select the random numbers from a uniform distribution, 

then the system may generate patterns of behavior that are not based on the physics of the 

simulation [25].    
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Figure 13.   Basic Algorithm for Nonconserved Spin Ising Model Using Kawasaki 
Dynamics After [25]. 
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Figure 14.   Basic Algorithm for Conserved Spin Ising Model Using Glauber Dynamics 
After [25]. 
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2. Monte Carlo Q-State Potts Model 

A more general case of the Ising model is the Q-state Potts model.  The Potts 

model is almost identical to the Ising model with the exception that there are more than 

two spins.  In fact, there can be Q states given for each site.  Therefore, a site can have 

more values than zero and one, and each site can have a state value from zero to Q.  This 

results in the model being called the Q-state Potts model.  In the case of a polycrystalline 

material, the spins might be all of the possible grain orientations of individual crystallites, 

or grains, in the solid material.  The Potts model can be used to simulate a much larger 

number of grains and is ideal for simulating grain growth and sintering.  Each state can 

represent a different grain with a different orientation.  The boundary between unlike 

spins is analogous to the grain boundary.  

The following example shows how the Potts model can be used to simulate grain 

growth.  Assume that there are ten states in the system ranging from one to ten.  In order 

to simulate grain growth, Glauber dynamics will be used so that the spins are not 

conserved and the system allows grains to grow at the expense of neighbor grains 

shrinking.  The first step is to randomly choose a site (Figure 15).  The site in Figure 15 

has one like neighbor and seven unlike neighbors, resulting in an energy of seven for the 

system.   

5 5 4 

5 7 2 

5 7 8 

Figure 15.   Potts Model Random Site. 

Once the site is chosen, the spin of the site is randomly chosen from one to ten.  In 

the first case, a value of three is assigned as seen in Figure 16.  The site now has no like 

neighbors and eight unlike neighbors.    The change in energy is given by the difference 

in the number of unlike neighbors in Figure 16 from the number of unlike neighbors in 

Figure 15; in this case +1 ( ). 
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5 5 4 

5 3 2 

5 7 8 

Figure 16.   Potts Model New Site Value Using Glauber Dynamics. 

Therefore, the energy of the system goes up and the site retains the old spin of 

seven.  If a site value is chosen as two, four, seven, or eight, the change of energy in the 

system will be zero and the new spin will be accepted.  For new spin values of one, three, 

six, nine, and ten, the energy of the system will go up and the old site is retained.  If the 

kT value is set higher than zero, then there is a probability that one of these spin values 

could be maintained due to the thermal energy of the system.  The final spin value that 

could be chosen is five as seen in Figure 17. 

5 5 4 

5 5 2 

5 7 8 

Figure 17.   Potts Model New Site Value for Grain Growth. 

For a value of five, the energy of the system goes from seven to four, a change of 

-3; and the spin value of five is retained.  From Figure 18, it is evident that the grain with 

values of five has grown from 4 sites to 5 sites at the expense of the grain with value of 

seven.  Of course, this example is extremely simple and in order to produce physical 

results, the number of sites and iterations needed must be must larger.  The question is 

how large a simulation must be to get adequate results and are there algorithms that can 

run simulations large enough to produce realistic results. 

The method for selecting sites and spins affects the kinetics of the simulation in 

an important way.  The Potts model as implemented in SPPARKS normally uses Glauber 

dynamics and has three separate algorithms for choosing the new value of a sites spin.  

The first is the basic Potts model and a random site from 1 to Q is chosen.  The next 
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model, “potts/neigh,” chooses a spin randomly from the spins of neighbor sites and a 

null-bin, which extends the possible spins to all Q possible spins in the system.  This 

algorithm weights the probability of picking a particular neighbor spin by the frequency 

of that spin in the current neighbor-set.  If a site has eight neighbors with 4 different site 

values, then each neighbor spin will be chosen with a 1/8 probability and the range of 

spins from 1 to Q will be chosen with a 4/8 probability.  The final model, 

“potts/neighonly,” discards the null-bin and will choose the four spin values with a ¼ 

probability [22].  The probability of swapping the selected spin based on its change in 

energy is the same for all three spin-selection models and follows the algorithm in Figure 

14; however the kinetics of the simulation increases from spin-selection method one 

through three. 

B. STOCHASTIC PARALLEL PARTICLE KINETIC SIMULATOR 

This thesis utilizes the massively parallel program known as stochastic parallel 

particle kinetic simulator (SPPARKS).  SPPARKS was developed at Sandia National 

Laboratories and is the first massively parallel KMC code [26].  As noted in the 

introduction, the ability to run extremely large simulations is key to simulating the 

evolution of nanostructures during grain growth and sintering.  SPPARKS is an open 

source code that can run on a single processor or multiple processors.  It is a parallel MC 

code for on-lattice and off-lattice models that includes algorithms for KMC, rejection 

kinetic Monte Carlo (rKMC), and Metropolis Monte Carlo.  The code is written in C++ 

and is built by editing the makefile to produce and executable, such as spk_Hamming.  

Building the executable is determined by the platform running SPPARKS.  This thesis 

focuses on the on-lattice, KMC code of SPPARKS.  SPPARKS has many sub codes to 

facilitate a wide range of materials simulations.  It contains algorithms for Ising and Potts 

modeling as well as others.  This thesis will analyze the Sandia grain growth and 

sintering (SGGS) code developed for SPPARKS [24]. 

The SGGS code associated with SPPARKS contains algorithms for grain growth 

and sintering.  The code can be run for grain growth, sintering, or both.  Appendix B 

contains a sample input code for simulating the sintering of a cluster of particles.  The 
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input code sets the parameters SPPARKS uses to run the simulation.  It contains a variety 

of inputs to the system and outputs for analysis of the model.  The SPPARKS code 

annotates the time of the simulation in Monte Carlo steps (MCS).  The MCS is a non-

dimensional quantity and describes the step required to conduct a sweep of the simulation 

volume.  Each model calculates the MCS and corresponding sweeps differently.  For 

example, the SGGS conducts a sweep for every number of MCS based on the event ratios 

of grain growth, pore migration, and pore annihilation.  The MCS is calculated as the 

total number of events divided by the number of grain growth events.  In the case of the 

sample in Appendix B, each sweep takes a total of 3.5 MCS, where the total events is 

equal to seven and the grain growth events is equal to two. 

The SGGS code for SPPARKS utilizes the Q-state Potts Model with Glauber 

dynamics.  The Potts model is used because of the limitless number of spins.  The spins 

can be different grain orientations of the same element or represent a variety of elements 

and phases.  The designation of spin values is not important for determining the 

capabilities of the SPPARKS code.  The Glauber dynamics are used because the spins 

must not be conserved in order to grow grains.  The concept behind grain growth is larger 

grains grow as the smaller grains shrink.  In order to adequately demonstrate grain 

growth, the spins must be able to flip without being conserved. 

One important feature of the SGGS code and SPPARKS in general, is the use of 

temperatures.  The temperature of the system is not an actual temperature, but rather an 

activation energy equal to kT (Equation 17).  The activation energy is a used to generate 

a ratio between the energy of the system (number of unlike neighbors) and the activation 

energy to predict the probability of a spin swap.  For example, a kT equal to one will 

result in an energy of the system as: 

 ( )exp expEP E
kT
∆ = − = −∆ 

 
 (19) 

where  E∆  is the number of unlike neighbors. 

The temperature command used in SPPARKS is analogous to the actual 

temperature of the system and can be determined by comparing the melting temperature  
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to the temperature in SPPARKS where melting occurs.  This comparison allows for a 

range of SPPARKS temperatures from room temperature to the melting point of a real 

system.   

There are several key differences with the sintering code and the code for Potts 

grain growth modeling is the treatment of the boundaries.  Potts modeling has several 

boundary conditions as described previously.  These boundary conditions will not work 

for sintering because the continuous nature of the boundaries would preclude the 

densification of the particles and the movement of pores from the system.  Therefore, the 

sintering code has solid boundaries (site value -1) and the interior of the model is a single 

simulation volume without a continuous boundary (Figure 18).  This is one of the reasons 

for requiring large simulation volumes in order to have an adequate number of grains to 

simulate sintering. 

 

Figure 18.   SGGS Simulation Box Using MATLAB.  

Note:  The dark blue pixels on the edge denote the boundary of the simulation volume 

(spin=-1).  The lighter blue (spin=0) pixels denote open space. 
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The SGGS code contains other important features unique to sintering.  As 

mentioned above, the goal of sintering is to densify the material from an initial green 

density.  The SGGS code accomplishes densification by pore migration and pore 

annihilation.  The migration of pores allows the pores to move from the interior of the 

simulation to the edges where the pore becomes part of the open space surrounding the 

simulation.  The pore is replaced by a grain site and the density goes up.  Density is 

calculated by a smaller cube inside the simulation volume.  The cube in the SGGS code 

has sides with 1/3 the length of the sides of the simulation volume.  This methods results 

in a cube with 33 sites per side for a 1003 site simulation.  Calculating density this way 

allows the pores to migrate out of the cube and result in density going up.  Pore 

annihilation is performed by cancelling out two adjacent pores much like the annihilation 

of two dislocations interior to a grain.  The SGGS code also has three distinct 

temperatures for calculating the probability of grain growth, pore migration, and pore 

annihilation.  The grain growth temperature functions the same way as the Potts model.  

The pore migration and pore annihilation temperatures are very similar and determine the 

probability of the pore migration and pore annihilation events.  Of course, there is only 

one physical temperature.  It should be noted that the use of the word “temperature” in 

KMC simulations really refers to the thermal energy of the system, kT.  Three separate 

temperatures really refer to three different activation energies for different physical 

processes. 

C. NPS’ HIGH PERFORMANCE COMPUTING RESOURCES: HAMMING 

The simulations in this thesis made use of the Naval Postgraduate School’s shared 

computing cluster, Hamming.  As described earlier, these simulations are large, ranging 

from 106–108 lattice sites.  Hamming is a Linux-based computing system with 1360 

processors.  Each processor has one gigabyte of RAM and the entire system has over 200 

terabytes of storage.  The Hamming computer system can be used to run parallel 

processes with OpenMPI.  Useful information on Hamming can be found at 

http://hamming.uc.nps.edu/. 
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Hamming also has the ability to operate MATLAB, which was vital in producing 

microstructure figures from the output files.  A MATLAB code, ‘SPPARKS_viewer,” 

was written to display the microstructure from the output file of site values.  The 

MATLAB code inputs the site values and displays the microstructure in the x-y plane.  

The code has the ability to view the two-dimensional slices of the three-dimensional 

microstructure at any point in the z-axis.  Figure 18 is a microstructure generated from 

the MATLAB code.  The MATLAB code must be operated on Hamming because the 

dump files are too large to open on a personal or laptop computer.  The raw file sizes 

range from 380 megabytes for a 2503 simulation to 3.5 gigabytes for a 5003 simulation.  

MATLAB can be run on multiple nodes and processors for files requiring more than one 

gigabyte of memory.  In order to manage these large files, the dump files are written for a 

single time step as written in Appendix B under the “dump” command.  Removing the 

“*” from the output dump file will write all time steps to a single file vice separate files.  

Having one file for smaller simulations may be useful, but for larger simulations (> 

1003), the file may be too large to easily find and view the data. 

D. SIMULATION DEVELOPMENT 

This thesis focused on a series of numerical experiments to determine the ability 

of SPPARKS to run large simulations.  Many of the inputs were similar to the input file 

listed in Appendix B.  The first step in running SPPARKS was downloading the software 

from the SPPARKS website (www.cs.sandia.gov/~sjplimp/spparks.html).  Once 

downloaded, SPPARKS was compiled and a series of small simulations were run on a 

laptop (single four gigabyte processor) using the Ising, Potts, and SGGS models.  After 

testing the operation of SPPARKS on a single processor, SPPARKS was downloaded 

onto Hamming and compiled with the procedures in Appendix A.  The Potts and SGGS 

models were run on Hamming to verify the proper operation of the codes.  The results 

generated on Hamming were identical to the results generated on the laptop computer. 

Next, the ability to run large-scale simulations on Hamming using the SGGS 

model was conducted.  Simulations ranging from 1003 to 5003 sites were run.  These 

simulations were run to determine the simulation times, amount of RAM required, the 
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minimum number of processors required to run a given simulation, and the size of the 

output “dump” files.  After determining the efficiency and ability of Hamming to run the 

SGGS code, a simulation size of 2503 sites was determined to meet the requirements of 

the thesis.  In particular, this simulation size requires eight gigabytes of RAM and can be 

run on eight processors.  The time to solve sintering simulations was on the order of 

several hours.  These parameters allowed multiple simulations to be run at the same time 

on Hamming.  MATLAB was used on a series of dump files to determine the size files 

that could be opened in order to view the simulation microstructures. 

SPPARKS was also used to determine the operating characteristics of Hamming.  

The SGGS model was used to simulate a 2503 problem on a number of processors 

ranging from six to 20 in order to determine the solve and communication times required.  

Hamming’s ability to run a series of simulations using the Potts model and SGGS code 

was examined.  The Potts model was run with the “potts/neigh” and “potts/neigh” 

algorithms.  The randomness of the SGGS model was determined by running identical 

2503 multiple time with the same “seed” value and five different “seed” values. 

Once the ability to run simulations on SPPARKS using multiple processors was 

conducted, the ability of the Potts and SGGS models to accurately model grain growth 

was determined.  The effect of temperature on grain growth was determined by varying 

the temperature from 1.0 to 6.0 using the Potts and SGGS models.  Next, the simulation 

size was varied from 1003 to 4003 to assess the grain growth as a function of the number 

of sites using the Potts and SGGS models. 

Several parameters were varied to determine their effects on the SGGS code.  The 

porosity was varied from 5–40% to determine the effects of porosity on grain growth.  

Next, a 2503 grain growth and sintering simulation was run to determine the accuracy of 

cluster size, cluster radius, and density.  The grain size was also calculated to determine 

the rate of grain growth during both the grain growth stage and sintering stage.   
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IV. RESULTS AND DISCUSSION 

A. OBJECTIVE 1 

Learn and set-up the SPPARKS code at NPS. 

SPPARKS was successfully run on NPS’ high performance computing system, 

Hamming.  SPPARKS simulations were run to simulate grain growth using the Potts 

model and the SGGS code.  Sintering simulations were successfully run via the sintering 

code.  Using the procedures in the Appendices, SPPARKS can be loaded onto the NPS’ 

high performance computer, Hamming.  Once the SPPARKS code is compiled and the 

make file (binary) is produced, running simulations via SPPARKS is possible. 

Appendices B through G contain the codes required to run simulations via 

SPPARKS and to display the results.  Appendix B contains a detailed description of the 

executable code for SPPARKS.  The example is for a sintering simulation containing 

15,625,000 (2503) sites with initially 30% porosity. Appendix C is an output of the 

sintering simulation in Appendix B.  Appendix D is the procedure for generating an input 

microstructure to be read in by SPPARKS.  For simulations larger than 2003 (8,000,000) 

sites, MATLAB on Hamming should be used due to memory limitations on standard 

desktop computers.  The procedure for loading and launching MATLAB on Hamming is 

contained in Appendix E.  Appendix E contains the code for requesting the resources to 

run the simulation.  The commands for executing this code are also located in Appendix 

F.  Appendix G contains some useful commands for getting the status of jobs, deleting 

jobs, and editing large files that cannot be opened by other programs such as WordPad or 

text edit. 

B. OBJECTIVE 2 

Assess the performance of the SPPARKS code at NPS for large-scale simulation 

of grain growth and sintering of nano-scale materials. 



 44 

1. Computational Performance 

Quantitatively assessing the computational performance of the SPPARKS code is 

important to generating meaningful results in realistic time frames.  Several parameters 

were evaluated to determine the performance of running SPPARKS on Hamming.  Using 

SPPARKS ability to conduct simulations on parallel processors allows for much larger 

size problems than can run on a single processor or even a workstation with 4–8 

processors.  Running SPPARKS on a laptop computer with 4 gigabytes of RAM, allows 

for problems up to about 8,000,000 (2003) sites.  These size problems are too small to 

adequately simulate the physics of growing grains from the nano-scale to the micro-scale.  

Running on multiple processors should allow, in theory, for almost unlimited size 

problems.  The limits are the required memory, which is finite, the speed of each 

processor, the communicate schemes between processors, and the methods for input-

output (IO).  Hamming has 1360 processors and can handle simulations over 125,000,000 

(5003) sites.  In fact, setting up a one billion (1,0003) site simulation required one terabyte 

of memory.   Hamming was able to set up the problem using 512 processors (38% of 

Hamming’s processors), but because the simulations required one terabyte of memory, 

488 gigabytes of information was written to disk, which drastically reduced the 

efficiency. 

In addition to varying the number of processors to run a simulation, the time to 

run a simulation is important.  SPPARKS is able to conduct grain growth and sintering 

quickly, but as the simulations get larger, the time to complete the run necessarily 

increases.  Using more processors can speed up the simulation, but there are a number of 

factors to consider when running increasingly larger simulations, such as outputting data 

and visualizing the microstructures.  One factor to consider is the time to write the output 

files.  The output files take approximately eight times longer to write for a 5003 problem 

as opposed to a 2503 problem because the size of the problem is eight times larger 

(125,000,000 vice 15,625,000).  The differences in running different SPPARKS codes 

and the use of MATLAB were also examined.   For example, the time to upload a 

microstructure for a 2503 simulation was approximately 50 seconds compared to seven 

minutes for a 5003 simulation, which results in a linear increase in processing time. 
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SPPARKS was able to run on Hamming with satisfactory results.  The code could 

be further optimized for efficiency, but SPPARKS as written is able to run large 

simulations (e.g., 5003 sites) on Hamming.  Of course, obtaining resources on Hamming 

may be difficult if the demand is high and smaller problems may need to be run.  Due to 

the size of the simulations, eight 250 cubed problems can be run for the same amount of 

memory and processors as one 5003 problem.  It is important to prioritize simulations to 

be able to generate the optimal results of grain growth and sintering using SPPARKS. 

2. Number of Processors 

Sintering simulations were run with a size of 2503 sites.  The number of 

processors for the simulation was varied in steps of two from 6 to 20.  The simulation 

was run twice for each number of processors to determine the variation in run times.  

Appendix H contains the data and times obtained from the simulations.  The total solve 

times varied from about 8,400 seconds (2.33 hours) for six processors to about 3,100 

seconds (0.86 hours) for 20 processors.  Figure 19 shows the total simulation time versus 

the number of processors used.  The total times were consistent for the two runs and 

plateaued at about 14 processors before decreasing again as more processors were used.  

The plateau at 14 processors could be due to the number of nodes and processors used on 

Hamming and the arrangement of the processors on the nodes.  Hamming assigns 

processors based on a queuing program and does not guarantee that all the processors will 

run on one node unless specifically requested.  It could also be a property of the 

SPPARKS code in running the simulation as more than 16 processors are used.  Most 

likely the stabilization of the solve time is a combination of the way Hamming and 

SPPARKS work.  Variations in total run time could be caused by the configuration of 

processors used.  For instance, using eight processors on one node is faster than running 

eight processors on eight separate nodes because the communication time increases.  

Other factors such as other processes running could influence the time required to run a 

simulation.  In fact, the times required to actually run the solver were consistent and 

decreased with the number of processors used. 
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Figure 19.   Total Simulation Time Versus Number of Processors. 

The memory per processor is also an important statistic, as each processor on 

Hamming has one gigabyte of memory.  Exceeding one gigabyte will cause other 

processors to pick up the excess and could cause degraded performance for the 

simulation or other jobs located on the same node.  The total memory for the system 

generally went up for the number of processors due to the communication required across 

processors (Figure 20).  The reduced memory required for 18 processors on run two may 

be a function of the Hamming system and location of the processors on the nodes.  Other 

jobs running on Hamming could have an effect on the KMC simulations.  As the number 

of processors goes up, the memory required to communicate site values from processor to 

processor goes up.  Using processors on different nodes has little effect on the simulation 

time or memory.  Requesting eight processors on one node vice the first eight nodes 

available may result in longer queue times if hamming is being heavily used. 
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Figure 20.   Total Memory Versus Number of Processors. 

The final statistic important in determining the number of processors to use is the 

solve time.  The solve time for the simulations went down by a factor of three (6,000 

seconds to 2,000 seconds) from six to 20 processors (Figure 21).  Even though the system 

was more efficient using a higher number of processors, using fewer processors may be 

advantageous.  If hamming is being heavily used, requesting fewer processors would 

allow for more jobs to run at one time and may result in shorter wait times in the queue.  

Many of the simulations run with 2503 sites for this thesis used eight processors with no 

noticeable degradation in performance.  For KMC simulations, running simulations at 

about 50–75% of the processor memory is optimum for performance while minimizing 

the number of processors.  The memory per processor is simply the total memory of the 

simulation divided by the number of processors.  Exceeding one gigabyte per processor 

drastically reduces the efficiency and simulation time because the excess memory is 

written to disk vice the processor. 
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Figure 21.   Simulation Solve Time Versus Number of Processors. 

An interesting result from running the same simulation using a different number 

of processors is the final number of clusters and the values for N and R.  Each simulation 

resulted in slightly different final values.  The reason for the difference is most likely the 

‘seed’ value which decides the randomness of the system.  Each processor uses the ‘seed’ 

value to separately run the simulation.  Therefore, running the simulation with 10 

processors will result in different seed parameters than a simulation run with 14 

processors because the simulation is divided differently.  The results are identical for 

simulations run with the same number of processors and will be discussed in more detail 

in the next section. 

3. Simulation Size Restrictions 

The ability to run large-scale problems is key to modeling the physics of sintering 

at the nano-scale to the micro-scale.  As mentioned in the introduction, a 500 sites per 

edge cube results in 125,000 10 nm grains.  If the 10 nm particle are sintered to grain  

 



 49 

sizes of 100 nm, this will result in 125 grains in the simulation volume with 5 grains per 

edge.  Reducing the sites per edge to 250 results in 15.625 grains/volume as seen in 

Equation 20: 

 ( )
3

3250 1 2.5 15.625
100 1

sites edge nm particles edge particles volume
nm particle site

 
× = = 

 
 (20) 

It is apparent that 15.625 particles/volume may not be enough to adequately model the 

system and develop grain growth and sintering physics.  To put this in perspective, the 

output file for the microstructure of 5003 sites is on the order of 3–4 gigabytes vice only 

350–500 megabytes for 2503 sites.  The microstructure file for a one billion site 

simulation is 29 gigabytes.  In order to visualize the microstructures via MATLAB, the 

program must be able to open files of this size, which requires the use of Hamming.  

MATLAB on the current desktop computers in the MAE student computer laboratory are 

capable of opening a 200 megabyte file which is about 2003 sites. 

Based on the above numbers, the optimum size problem is roughly 5003 sites.  

This number of sites allows for the evolution of 10 nm size particles to 100 nm size 

particles while still retaining the physics of the system.  A 5003 site problem requires 

about 80 gigabytes of memory, which translates to at least 80 processors.  Running one 

simulation would require a little less than 6% of hamming’s capacity (80/1360).  In 

addition to the time required to run the simulation, the time required to output and 

visualize the microstructure is important.  Writing the microstructure file takes on the 

order of 10–20 minutes.  Creating a starting microstructure per the procedure in 

Appendix D takes several hours.  The reason for the long time is a result of writing the 

input file in text format, which is the format required by SPPARKS.  SPPARKS can 

output files in binary form, which will typically write out much faster, however, the 

binary format must be converted to text before reading into SPPARKS as an input file.  

In the future, SPPARKS should be amended to read binary input files which provide a 

substantial savings in system memory and time. 
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4. Performance Differences between Potts and SGGS Codes 

One of the tests conducted to determine the computational performance of 

SPPARKS was to compare simulations between the Potts and SGGS codes.  The Potts 

model uses both the “potts/neigh” and “potts/neighonly” algorithms for grain growth 

simulations.  The algorithm choosing only spins of the neighbor sites is much faster than 

the neighbor algorithm.  This is apparent because every spin chosen in the 

“potts/neighonly” algorithm has a higher probability of swapping spins and resulting in 

grain growth, whereas the “potts/neigh” algorithm has a lower probability of resulting in 

grain growth because random spins can be chosen that do not correspond with the 

neighboring spins.  The grain growth for the sintering code is comparable to the nearest 

neighbor algorithm.  The major difference is that the Potts model will ultimately result in 

one final grain if the simulation is run long enough.  Depending on the initial Q value 

(number of spins in the system), the Potts model will take between 24 and 48 hours of 

simulation time to grow to a single grain for simulation sizes in excess of 250 sites/edge 

using the nearest neighbor algorithm.  The simulation times and memory required are 

close for the Potts nearest neighbor model and the SGGS code sintering grain growth 

model. 

The sintering portion of the sintering code does not run as fast as the grain growth 

portion.  As an example, a 5003 site problem conducted 400 grain growth sweeps in one 

hour 24 minutes.  Once sintering began, the simulation slowed down considerably and 

the next 18 sweeps required six hours and 33 to complete.  The longer time for sintering 

may be due to the requirements to track pore migration and pore annihilation, which 

requires more data to be stored and more communication between processors.   The grain 

growth portion of the SGGS code The initial conditions and porosity are partially 

responsible for the delay in simulation time.  Overall, the simulation of grain growth 

using the Potts model and SGGS is very similar. 
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C. OBJECTIVE 3 

Identify and test key physical variables required to properly model grain growth 

and sintering using kinetic Monte Carlo codes such as SPPARKS. 

1. Characterization of Stochastic Behavior in Coupled Grain and 
Sintering Simulations 

The stochastic nature of KMC simulations SPPARKS is implemented in the 

“seed” command of the input file.  The seed value defines the random number generator 

for the model and affects the starting microstructure and the progression of grain growth 

and sintering.  Random numbers are used to determine whether the probability of 

swapping spin will occur or not.  The random number is compared to the probability in 

Equation 17.  If the probability is higher than the random number generated from zero to 

one, then the spin value is swapped.  It is important to note that two simulations with 

identical initial conditions and run with the same seed will produce identical results to 

within numerical precision.  If one wishes to sample different, stochastic pathways with 

the same set of initial conditions, then different seed numbers must be chosen.  Appendix 

I contains the results of running two separate simulations with five different seeds.  The 

simulations were run for 70,000 MCS at a temperature of 1.0.  The difference between 

the sets of simulations was the porosity, which was set at 0% and 30%.  Figure 22 

illustrates the variation in R for the different simulations at 30% porosity starting at a 

radius of one voxel.  The change seed value does introduce a small variation into the 

simulation results, but the overall trend remains the same.  Due to the similarity among 

these results, running simulations with different seeds may not be worthwhile and 

comparing simulations with identical seeds is a way to remove the randomness from the 

system in order to isolate other parameters of interest such as temperature or density. 
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Figure 22.   Grain Growth and Sintering as a Function of Seed Number. 

2. Grain Growth as a Function of Temperature 

Both the Potts model and SGGS code were run to determine the rate and 

characteristic of grain growth when varying the temperature.  It should be noted again 

that the “temperature” in KMC is really a thermal energy that is compared with the 

activation barrier energy for a given process.  The results are shown in Figures 23–25.  

The two Potts simulations were run with temperatures ranging from 1.0–6.0.  All of the 

simulations were 2503 and the Q-state was 1,000,000.  Both the neighbor (potts/neigh) 

and neighbor only (potts/neighonly) were utilized to simulate grain growth.  The 

simulations were run for 192 computational hours  (24 hours x 8 processors).  Figure 23 

shows that temperatures 1.0 and 2.0 yield consistent grain growth to a radius of just under 

25 voxels.  The temperature of 2.0 has more fluctuations in radius (noise) due to the 

higher number of site swaps as the probability goes up, which results in more changes in 
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radius.  Temperature 3.0 has even more noise as the simulation progresses and peaks at a 

radius of 17 voxels.  Proceeding to temperature 4.0, the radius rapidly increases to 6 

voxels after about 1,500 sweeps and then stays constant.  Temperatures 5.0 and 6.0 

resulted in the same lack of grain growth.  The fact that temperature 4.0 increases in 

radius and temperatures 5.0 and 6.0 do not are likely a computational artifact due to the 

high probability of energetically unfavorable transitions.  Future work should be done to 

better tie the KMC temperature to the activation energy barriers for grain growth and 

sintering.  

 

Figure 23.   Potts Model Grain Growth Versus Temperature for Potts/Neigh. 

The Potts model using the “potts/neighonly” also resulted in grain growth for 

temperatures 1.0–3.0 but with an increase in noise (Figure 24).  The grain growth was 

more erratic and the fluxuations in grain size for these temperatures were even more 

sensitive to temperature.  Of note, the fluxuations in the radii for temperatures 2.0 and 3.0 

are much greater than for “potts/neigh.”  The reason for the increase is the way the 

“potts/neighonly” chooses the site spin values as one of the neighbor site values.   
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Figure 24.   Potts Model Grain Growth Versus Temperature for Potts/Neighonly. 

In addition, the “potts/neighonly” grains grow faster and the fluxuations are due 

to the rapid change in size of the large cluster surrounding two smaller clusters (Figure 

25).  The final result for temperature 3.0 is the formation of a single grain.  Temperature 

2.0 would most likely result in a single grain if the simulation was run longer.  The 

resulting radii for temperatures 4.0–6.0 are identical to the “potts/neigh” radii and do not 

adequately model grain growth. 

 

Figure 25.   Potts Microstructure Showing Three Grains. 
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The final set of simulations performed were for grain growth using the SGGS 

code.  The initial microstructure contained particles of radius one (single voxels), which 

is identical to the Potts model.  The simulations were run for 70,000 MCS.  The results of 

grain growth are shown in Figure 26.  The grains grew initially in the temperature range 

1.0–3.0.  The grain growth for temperature 1.0 is fairly consistent, but for temperatures 

2.0 and 3.0, the grain size appears to go down eventually.  This is due to the nucleation of 

single voxel grains due to the increased temperature and higher probability that at spin 

can swap to a new value regardless of the energy change.  As the Potts model revealed, 

the SGGS model does not adequately model grain growth for higher temperatures 

without compensation for the creation of single sites with new spins. 

Overall, the ability to model grain growth via the Potts model and SGGS model 

does not reliably reflect the actual physics.  In fact, as the temperature increases, the 

grains should grow more rapidly.  Stated earlier, with 26 nearest neighbors, the melting 

temperature for both models should be at a temperature of 26.  It seems that the models 

result in the physical onset of melting at much lower temperatures.  The lack of apparent 

cluster growth is due to the formation of single voxel particles due to the increased 

likelihood of accepting a spin with 26 unlike neighbors from Equation 17.  As the 

temperature goes up, the probability of forming a single voxel grain goes up until a 

temperature greater than 3.0 when the average cluster size does not go up. 
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Figure 26.   SGGS Code Grain Growth Versus Temperature. 

3. Grain Growth as a Function of Simulation Size 

The next set of simulations run were to examine the effect of simulation size 

(number of sites) on grain growth.  The Potts model was used to grow the grains and are 

shown in Figures 27 and 28.  Figure 27 shows the grain growth using the “potts/neigh” 

algorithm and Figure 28 shows the grain growth using the “potts/neighonly” algorithms.  

The temperature used in the simulations was 1.0 and all simulations were run for 24 

hours of actual time with a computational time of 192 hours.  The “potts/neigh” model 

results in consistent grain growth across simulation sites with higher noise at lower sizes.  

The grain growth was actually the same for all simulation sizes up to about 8,000 sweeps 

as seen in Figure 27.  The “potts/neighonly” resulted in much faster grain growth as 

expected.  The fluxuations in grain growth are due to the method used in the calculation 

of grain/cluster radius and the fact that as the simulation decreases to fewer grains and 

ultimately one large grain, the value for radius is less accurate.  The jumps for 100 and 

200 sites per edge are a result of simulation progressing to one grain.  The 1003 site 
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simulation took 4,676 sweeps to reach one grain, and the 2003 site simulations resulted in 

one grain after 11,918 sweeps.  These results demonstrate the need to run large 

simulations capable of maintaining a minimum number of grains to adequately model the 

physics of grain growth.  The simulations for 1003 and 2003 resulted in single grains 

fairly rapidly.  Also, the fluctuations in grain growth decreased as the problem size was 

increased.  In order to systematically estimate the minimum size, the simulation needs to 

be run at different sizes.  The size above which the results are no longer changing 

appreciably with larger simulation sizes is the minimum size. 

 

Figure 27.   Potts Model Grain Growth Versus Size for Potts/Neigh. 

Note:  the curves in Figure 27 for the simulation sizes up to 8,000 sweeps are identical. 
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Figure 28.   Potts Model Grain Growth Versus Size for Potts/Neighonly. 

The SGGS model was also used to determine the effect of simulation size on 

grain growth and is shown in Figure 29.  The temperature was set to 1.0, porosity was 

0%, and sintering was turned off.  The simulation was run for six simulation sizes and 

210,000 MCS.  The grain growth versus MCS is plotted in Figure 29 and the number of 

clusters versus MCS is plotted in Figure 30.  The grain growth is greater for larger sized 

simulations.  The interesting result is the reduced grain growth as compared to the Potts 

model.  This is most likely due to the lack of periodic boundary conditions in the SGGS 

model induced by the boundary.  The Potts model uses a continuous boundary to model 

the boundary conditions while the SGGS model has a wall at the boundaries.  This may 

inhibit grain growth resulting in longer times to achieve a single grain, if possible.  Figure 

31 shows the continued grain growth for the larger simulations up to 350,000 MCS.  

Even though the grains continue to grow, they do not attain a single grain.  In fact, the 

step increase in radius at 250,000 MCS is reminiscent of exaggerated or abnormal grain 
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growth, and is most likely due to the conditions imposed by the boundaries on the 

simulation size and the dissolving of smaller grains as the larger grains grow.  The SGGS 

model does an acceptable job in simulating grain growth and shows how large grains can 

be grown without porosity.  In fact, all size simulations were similar in growing grains to 

a radius of 20 voxels. 

 

Figure 29.   SGGS Code Grain Growth Versus Simulation Size. 
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Figure 30.   Number of Clusters Versus Simulation Size for SGGS Code. 

 
Figure 31.   SGGS Model of Grain Growth Versus Simulation Size to 350,000 MCS. 
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4. Grain Growth as a Function of Porosity 

The grain growth as a function of initial porosity is important for simulating the 

sintering of nanopowder compacts.  These simulations also offer insight to how these 

phenomena are coupled in the SPPARKS-SGGS code.  SPPARKS calculates N as the 

number of sites, or voxels, contained in each grain or cluster.  The distribution of cluster 

sizes is given in Figure 32 for a 2503 simulation with a temperature of 1.0 and porosity of 

25%.  The cluster sizes were taken at MCS 20,000 and appear to be represented by a log-

normal distribution.  Particle sizes are most naturally described by log-normal 

distributions as the minimum size must be zero.  To get this result, it was necessary to 

remove the cluster sizes for the boundary (site values of -1) and the pores (site values of 

0).  SPPARKS does not remove these site values and uses them to calculate the value of 

N.  For 25% porosity, the value of N calculated by SPPARKS is 1,114.7 while the value 

of N with the two site values removed is 778.9.  Therefore, calculating the actual number 

of sites, or volume, of the grains is required to get an accurate representation of the 

microstructure.   

 

Figure 32.   Histogram of Cluster Sizes for 25% Porosity at 20,000 MCS. 
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The distribution of pore volumes for a 2503 grain growth is also log normal in 

nature.  The sites per pore for a 5% initial porosity was calculated and the closed pore 

size was plotted at 20,000 MCS (Figure 33).  The closed pores were plotted for 5% 

porosity because there were not enough closed pores to generate a log normal plot at 25% 

porosity (12,726 closed pores at 5% porosity vice 26). 

 

Figure 33.   Histogram of Pore Sizes for 5% Porosity at 20,000 MCS. 

The distribution of radii for the 25% porosity simulation was also calculated and 

plotted.  In SPPARKS, the radius of each cluster is calculated by taking the cube root of 

the cluster size ( 3R N= ).  The output radius is the average of the radii of the clusters. 

The distribution of the radius for a 2503 simulation is plotted at 20,000 MCS in Figure 34.  

The distribution of radius does not follow a log normal curve but rather a Gaussian 

distribution.  This change in distribution suggests that the current method for calculating 

R is not correct.  R should also be log normal as is normally the case in grain size 

distributions.  In the future, the SPPARKS-SGGS code should be amended to calculate R 
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through a direct calculation from the Euclidean distance across the cluster.  The peak at 

one in Figure 34 is due to the formation of the one voxel grains as described earlier. 

 

Figure 34.   Histogram of Radius for 25% Porosity at 20,000 MCS. 

The radius, R, also includes the clusters associated with the boundary and pores.  

In order to get the actual grain size, the clusters associated with site values of -1 and 0 

must be removed.  Figure 35 shows the grain growth as a function of porosity.  At first 

glance, it appears that a larger grain size results at 15% initial porosity while the smallest 

grains are being grown at 5% initial porosity.  This observations is counterintuitive 

because the lower the porosity should result in reduced pinning of grains and allow the 

grains to grow more rapidly.  In order to accurately analyze the discrepancy, it is 

important to remember how SGGS calculates the cluster size and radius.  The grain size 

(radius) includes all site values including -1 and 0.  In order to get an accurate grain size, 

these site values must be removed.  For a 2503 simulation there are 372,008 sites in the 

boundary (spin = -1) and almost four million sites with value equal to 0.  The results of 

these calculations are located in Appendix J. 
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Figure 35.   Radius Versus Time as a Function of Porosity. 

The images from the simulated microstructures clearly show larger grains at 

lower porosity.  Figure 36 depicts the microstructures for 5%, 15%, 25%, and 35% 

porosity.  The dark blue areas are pores and are located at triple junctions and grain 

boundaries.  As the porosity increases, the number of closed pores goes down and the 

pore structure is predominately open at higher porosities (Figure 36 C and D). 
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Figure 36.   Microstructures of Grain Growth for Initial Porosities of A) 5%, B) 15%,  
C) 25%, and D) 35%. 

Note:  The different colors represent individual grains. 

As stated earlier, the grain size is largest at lower porosity.  Figure 37 shows the 

radius values calculated in SGGS and after removing the boundary and pores (both open 

and closed).  The difference in radius is large for porosities less than 15%, but as the 

porosity is increased the SGGS and calculated radii of the grains are almost identical.  

For sintering, the radius is accurate at green densities of 60–70%, but becomes less 

accurate as the density approaches 90% as seen in Figure 37.  From the porosity 

A B 

C D 
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simulations, it is apparent that both the output data (density and radius) and the associated 

microstructures are important for understanding the physics.  

 
Figure 37.   Radius at 20,000 MCS Versus Initial Porosity for Grain Growth. 

5. Sintering Simulations 

The SGGS code was used to simulate coupled grain growth and sintering.  The 

simulation was run with grain growth to a radius of 4.68 voxels and a temperature of 1.0.  

The porosity was initially 30% and the simulations were run for 70,000 MCS.  Sintering 

began at 980 MCS.  Figure 38 shows the number of clusters and radius as a function of 

time (MCS).  The number of clusters rapidly decreased until about 20,000 MCS when the 

decrease became linear.  The radius initially goes from an initial grain radius of one to 

4.68 and then drops immediately once sintering begins.  This reduction in radius occurs 

due to the migration of pores and the initiation of small grains due to the temperature.  

SPPARKS allows grains to nucleate in the pores when the temperature is greater than 

zero.  The radius then increases to about 6.5 before decreasing again.  From the 

microstructures in Figure 39, it is clearly evident the grains actually grow throughout the 
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simulation.  The microstructure in Figure 39 (A) shows the microstructure at the 

beginning of sintering.  It is not clear if the transition from A to B in Figure 39 is a real 

transition or a computational artifact. 

 

Figure 38.   Clusters and Radius Versus Time for Sintering. 
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Figure 39.   Microstuctures for Sintering at A) 980 MCS, B) 1,960 MCS, C) 4,900 
MCS, D) 9,800 MCS, E) 19,600 MCS, and F) 68,600 MCS.  

Note: All points in the figure refer to the alphabetic labels in Figure 39. 
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There are several important results from the microstructures in Figure 39.  The 

first is that the pores roughen from A to B.  This is analogous to pore migration and 

results from the pores moving from the center of the microstructure to the outside.  In C, 

the pores are smoother and have begun to coarsen.  In addition, the grains are growing 

slightly as sintering continues and the density increases.  The pores have also migrated 

primarily to triple junctions and grain boundaries.  As sintering continues further, both 

the grains and pores coarsen.  Also, it is clear that the particle region is shrinking as the 

pores are accumulating at the top and bottom of the microstructures in Figure 39.  From E 

to F, it is clear the grains have grown considerably while the density is fairly constant 

(Figure 40).  In fact, there is a point in the simulation where the optimum sintering time is 

reached.  At this point the density has begun to plateau and the grains continue to retain 

their nanoscale properties.  After this point, the grains begin to grow and the material will 

lose its nanostructural properties.  One reason for the lack of grain growth earlier in the 

simulation is the pinning effect of the pores.  The pores prevent the grains from growing 

until the pores reach a minimum size and a larger inter-pore spacing.  It is also important 

to note that the pores can become engulfed by the larger grains as sintering continues.  

Ideally, sintering would be halted and the temperature reduced once the desired density 

has been reached.  In this case, the microstructure in Figure 39 D is optimum because the 

density is at 90% and the grains have not begun to grow appreciably and most likely have 

retained their nanoscale properties. 
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Figure 40.   Density Versus Time for Sintering. 

6. Sintering as a Function of Grain Size 

Generating starting microstructures for sintering is important to systematically 

investigate the effect on different grain sizes on sintering.  Unfortunately, SGGS does not 

have the ability to create microstructures of grains larger than 10 voxels when 30% 

porosity is required (Figure 41).  As just discussed, the porosity effectively pins the grain 

boundaries, thus suppressing grain growth.  The ability to generate a starting 

microstructure with larger grains is important to understanding sintering as a function of 

grain size and temperature.   

Another strategy for growing grains larger with 30% porosity is to grow the 

grains with 0% porosity and then using this microstructure as an input to SPPARKS.  

Porosity can be assigned to this new, large-grained, input microstructure at a specified 

level, e.g., assigning 30% of the sites a spin of zero.  Figure 41 shows the initial 
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microstructure (left) and the microstructure after reaching a radius of 15.  The porosity is 

randomly distributed throughout the microstructure and coarsens as the SGGS code is 

run.  The grains themselves do not appear to grow, which results in an unrealistic starting 

microstructure on the right.  In fact, what has happened in this simulations is that the 

pores have migrated without any grain growth in order to reduce the pore-grain 

interfacial area.  The microstructure in Figure 41 B is reminiscent of pore migration and 

coalescence during high temperature irradiation of nuclear materials [27].  The ability to 

accurately produce an initial microstructure with 30% porosity is difficult and vital to 

simulating sintering using the SGGS code.  Future work should include the creation of a 

code specifically for generating starting microstructures with specified grain size and 

porosity. 

 

Figure 41.   Microstructure with 30% Porosity Added After Grain Growth. 

A B 
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V. RECOMMENDATIONS FOR FUTURE WORK 

Throughout the research and implementation of SPPARKS, specific aspects of the 

code that need to be addressed were identified.  The most important area for 

improvement is the ability to create microstructures with both a specified grain size and 

porosity level.  As of now, it is not possible to grow grains with 30% porosity greater 

than a radius of 9 using the SGGS code.  Several approaches were used, but none 

produced a satisfactory structure.  One recommendation would be to randomly input seed 

sites separated by the desired grain diameter apart and grow the grains from these sites.  

Once the grains come in contact, the grain growth would stop growing and the resulting 

microstructure would contain grains of the desired size with a green density between 65–

75%. 

Another area for future work is to have SGGS output the key parameters needed 

to describe grain growth and sintering.  The first parameter is the value for grain size.  

SGGS calculates and outputs cluster radius, but it does not exclude the boundary sites 

and pores in this calculation.  Other key parameters that would be useful in developing an 

accurate model for sintering are average neck size and average distance between centers 

of mass of the grains. 

Finally, future work needs to address the effects of KMC temperature on grain 

growth and sintering.  The correct scaling of the KMC temperature with the interfacial 

energy that drives the grain growth and sintering is not well understood and comparing 

the melting temperature of a simulation with 26 nearest neighbors does not correspond 

with a temperature of 26.0.  In conjunction with a better scaling of the simulation 

temperature, the algorithm should be revised to exclude the nucleation of single pixel 

grains of new orientations as this phenomena is not a part of the physics of the grain 

growth-sintering problem..  A method of rejecting spin swaps resulting in single voxel 

grains should be implemented similar to the “potts/neighonly” algorithm. 
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VI. CONCLUSIONS 

This master’s thesis has investigated the ability to simulate coupled grain growth 

and sintering with SPPARKS and the Potts and SGGS codes.  These codes were 

successfully installed and implemented on NPS’ high performance computing resources.  

Compiling and running simulations on Hamming was performed and the ability to attain 

useful data and view resulting microstructures was achieved.  Large input and output files 

(on the order of several gigabytes) were used by SPPARKS and viewed via MATLAB on 

Hamming using new MATLAB code written for microstructural data visualization. 

The computational performance of the SPPARKS code on Hamming was 

assessed, and properties such as simulation time and memory usage were collected.  

Using multiple processors systematically decreases the simulation time as did running 

multiple processors on the same node.  Ensuring the one gigabyte per processor is not 

exceeded results in faster simulation times because the system does not write to disk.  

Simulations sizes up to 5003 can be successfully run on Hamming.  Larger size problems 

take more time and the output files become impractically large.  A 10003 simulation uses 

over one terabyte of information and takes up an unacceptably large portion of 

Hamming’s resources. 

The SGGS code can be used to accurately describe grain growth and sintering.  

The densification of the particles can be predicted and is a key parameter in assessing the 

sintering of grains at the nanoscale.  The evolution of the microstructure is also 

accurately represented in the SGGS code and the grain size is consistent with the 

microstructure.  The ability to determine the optimum sintering time and temperature can 

be determined using the SGGS code by analyzing the density, grain sizes, and 

microstructures.  The SGGS code indicates that pores retard grain growth, as higher 

porosity results in smaller grains.  In addition, simulating grain growth and sintering with 

the SGGS code illustrates the evolution of the pore microstructure and suggests that there 

is an optimum sintering time with respect to maximizing density while minimizing grain 

size.   



 76 

The SGGS code does not have the ability to produce microstructures with grain 

radii greater than 10 voxels with 30% porosity.  The SGGS code does not output average 

grain size, average neck size, or the average distance between grain center of masses.  

These parameters would be useful in accurately modeling and assessing the sintering of 

particles at the nanoscale. 
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APPENDIX A. COMPILING SPPARKS ON HAMMING 

Producing the binary file necessary for running SPPARKS requires the compiling 

of the code.  The specific makefile depends upon the particular machine being used.  

After logging into the Hamming, the modules compile/gcc and mpi/openmpi are loaded 

(Figure 42).  These files allow SPPARKS to run on multiple processors.  The next step is 

to navigate to the source (src) file under SPPARKS.  The makefile ‘liberty’ is used to 

generate the executable file.  After typing ‘make liberty’, the code will compile and result 

in an executable, ‘spk_liberty’.  The file is then copied into the appropriate example file 

in order to run simulations.  Each time the source code is changed, the code needs to be 

compiled before running new simulations. 

 

Figure 42.   Commands for Compiling SPPARKS on Hamming. 

Figure 43 shows the makefile liberty, which is used to compile SPPARKS on 

Hamming.  There are no changes required to the downloaded liberty file to compile the 

code. 
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Figure 43.   SPPARKS Liberty Makefile. 
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APPENDIX B. SAMPLE SPPARKS INPUT CODE 

# SPPARKS Sinter Code Filename: input_250_5p30.sinter 
 
seed 56789 
 
app_style sinter 
dimension 3 
lattice sc/26n 1.0 
region box block 0 250 0 250 0 250 
processors 1 1 8 
create_box box 
create_sites box 
set i1 unique 
# set site range 1 125000 
# read_sites start_250_5p0.txt 
set i1 value 0 fraction 0.3 
 
event_ratios 2.0 1.0 4.0 
events_temperatures 1.0 1.0 15.0 
 
time_sinter_start 700 
 
sweep random 
sector yes 
 
diag_style energy 
diag_style sinter_density 
diag_style cluster 
 
stats 350 
dump 1 700.0 dump_250_5p30.*.sinter 
 
# diag_style cluster delt 700.0 stats… 
 no logfreq 1.0 700.0… 
 filename cluster_250_5p30.dat 
 
run 14000 
 

The input script and description of each command are taken from the SPPARKS 

manual located at the following website:  www.cs.sandia.gov/~sjplimp/spparks.html.  

The first section of the input file contains the parameters for setting up the simulation.  

The first line of the code is the “seed,” which determines the random number generator 
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for SPPARKS.  The random number generator is used to determine the probability of a 

spin swap if the change in energy is positive and the temperature is greater than zero.  

The probability of a spin swap is calculated and compared against a number from zero to 

one based on the random number generator.  If the probability is greater than the random 

number, the new spin is retained.  The next line determines the type of application.  In 

this case the “app_style” line is set to sinter, which will run the sinter code for simulating 

grain growth and sintering.  The “dimension” command line can be set to two or three 

depending on the application.  The sintering code only allows for three dimensional 

problems as will be discussed later.  The “lattice” command line determines the 

arrangements of the sites and number of nearest neighbors.  In this example, the “lattice” 

is square and each site has 26 nearest neighbors with 1.0 lattice sites between neighbors.  

The “region” describes the size of the model and lists the minimum and maximum x, y, 

and z coordinates.  For this example, there are 250 sites per axis or cube edge for a total 

of 15,625,000 (250 cubed) sites.  The next line determines the number of processors and 

what coordinates to place them.  The processors are placed in the x, y, and z directions.  

The sample input has 1, 1, 8, which runs eight processors in parallel in the z direction.  

The x and y processors must be kept at one in order to properly display the microstructure 

developed separately.  The “create_box” command generates a simulation box based on a 

specified region for on-lattice simulations.  The “create_sites” command generates “sites” 

and assigns spins to each site.  The “read_sites” command can be used in place of the 

“create_box” and “create_sites” command to build the simulation area.  The “set” 

command is used to assign the spin values to the sites.  It can be set to contain a specific 

set of site values such as one to 125,000 or a command such as unique to assign a per-site 

quantity is set to the site ID, which is effectively a value unique to each site.  The second 

“set” command is used to set a specific site value of zero to 30% of the simulation 

volume.  The value of zero in the sintering code represents a pore and the initial value of 

30% represents the green density of the initial microstructure. 

The second part of the input file determines the parameters used in running the 

simulation.  The “event_ratios” command determines the ratios for grain growth, pore 

migration, and pore annihilation, respectively.  The “events_temperatures” determines the 
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kT values for grain growth, pore migration, and pore annihilation, respectively.  For grain 

growth, only the grain growth temperature is used and all three temperatures are utilized 

for sintering.  The “time_sinter_start” determines the Monte Carlo step (MCS) when 

sintering begins.  The “sweep” command is set to random which chooses sites at random, 

one at a time.  Other “sweep” commands that can be used are “raster,” which is a sweep 

of  the lattice as a loop over all sites in a predetermined order, and “color,” which 

partitions the lattice sites into sub-groups or colors which are non-interacting.  This 

sequence means that events on two sites of the same color can be performed 

simultaneously without conflict.  This approach allows the code to run in parallel since 

events on all sites of the same color can be attempted simultaneously. The “sector” 

command partitions the portion of the simulation domain owned by each processor into 

sectors or sub-domains.  It is used in parallel simulations and can be used on single 

processors as well.  The final input is the “run” time which determines the MCS when the 

simulation will terminate. 

The third section of the input file defines the types of outputs required from the 

simulation.  The “stats” command defines when the statistics of the simulation will be 

printed to the screen in MCS.  The “diag_style” command determines the diagnostics that 

will  be displayed on each stats line.  For this example, the output file (Appendix C) 

contains the standard outputs along with the total energy of the system, the density of the 

system, and the cluster data, which includes the number of clusters in the simulation 

(Nclusters), average number of sites per cluster (N), and average radius of each cluster 

(R).  The “diag_style” command can be used to output a separate file at different 

intervals.  For example, the cluster “diag_style” command can be used to output a file 

containing the above information and the spin values and quantity of spins for each 

cluster at a specified interval.  The “dump” command outputs the spin value of each 

lattice site at the specified interval. 
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APPENDIX C. SPPARKS SINTERING SIMULATION OUTPUT FILE 

The following is the output file for a sintering simulation using SPPARKS.  The time is given in MCS and the CPU is given in 

seconds.  The time at the bottom of the output are also given in seconds. 
SPPARKS (30 Mar 2011) 
Created box = (0 0 0) to (250 250 250) 
  1 by 1 by 8 processor grid 
Creating sites ... 
  15625000 sites 
  15625000 sites have 26 neighbors 
Setting site values ... 
  15625000 settings made for i1 
Setting site values ... 
  4685984 settings made for i1 
Setting up run ... 
  Time    Naccept      Nreject  Nsweeps  Vmade       CPU       Energy  Density     Nclust      <N>      <R> 
     0          0            0        0      0         0  3.51936e+08  0.699861  10171441  1.53616  1.00002 
   350   62506641   1499993359      100      0       469  1.81548e+08  0.699792    167166    93.47  3.59823 
   700   77670712   3047329288      200      0       934  1.56822e+08  0.699856     99248  157.434  4.31478 
     . 
     . 
     . 
 13300  386004808  58988995192     3800   6422  3.48e+03  5.16184e+07  0.896971      8475  1843.66  7.02786 
 13650  390382059  60547117941     3900   6284  3.55e+03   5.1276e+07  0.897526      8349  1871.48  7.05801 
 14000  394722354  62105277646     4000   6319  3.65e+03  5.09534e+07  0.898083      8225   1899.7  7.07448 
Loop time of 3647.88 on 8 procs 
 
Solve time (%) = 1727.05 (47.344) 
Update time (%) = 0 (0) 
Comm  time (%) = 267.191 (7.32454) 
Outpt time (%) = 1090.17 (29.8851) 
App   time (%) = 453.484 (12.4314) 
Other time (%) = 109.979 (3.01487)
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APPENDIX D. PROCEDURE FOR CREATING AN INPUT 
MICROSTRUCTURE 

1. Open WinSCP 
2. Open PuTTY and log onto Hamming (PuTTY is a free and open source 

terminal emulator application which can act as a client for the SSH) 
 

Note: Steps 3–5 are only necessary if the original file needs to be saved. 
 

3. Copy dump file from the Hamming folder to the C: drive 
a. Move “dump_250_5p30.*.sinter” into C:SCRATCH 

4. Change the name of the file on the C: 
a. “start_250_5p30.sinter” 

5. Copy the new file back to Hamming folder 
6. Open in the file vi editor (vi start_250_5p30.sinter) 
7. Remove the header from the file and save (:wq) 
8. Open MATLAB in Hamming (Appendix E) 
9. Load dump file into MATLAB 

a. Type “load start_250_5p30.sinter” on command line and 
press enter 

10. Remove columns 3–5 of the file 
a. Type “start_250_5p30(:,3:5)=[];” 

11. Save the MATLAB data table to Hamming as a text file 
a. Type “dlmwrite(‘start_250_5p30.txt’, 

start_250_5p30,’delimiter’,’ ‘, 
‘precision’,’%9d’)” 
Note: this step will take approximately 30 minutes for 15,625,000 sites. 

12. Open the file in the vi editor (vi start_250_5p30.txt) 
13. Add the following header: 

a. # Comments 
 
15625000 sites 
0 250 xlo xhi 
0 250 ylo yhi 
0 250 zlo zhi 
 
Values 
 
1 -1 
2 -1… 

14. Save the file (:wq) 
15. Use this file in the ‘read_sites’ command for the input file 



 
 
 
 

90 

THIS PAGE INTENTIONALLY LEFT BLANK  



 
 
 
 

91 

APPENDIX E. LOADING MATLAB ON HAMMING 

The four commands in Figure 44 will initiate an interactive node for the user, load 

and launch MATLAB.  The first command requests an interactive node for 12 hours.  

The default wall time is one hour.  After this time, the interactive will close and all 

applications will terminate.  The second command will list the available modules 

available for load in Hamming.  The third command loads MATLAB, and the fourth 

command launches MATLAB while maintaining the command prompt.  MATLAB on 

Hamming will allow for much larger files to be opened (up to several gigabytes) than 

MATLAB on the desktop computers.  The default for an interactive node is one 

processor, one gigabyte of memory, and one hour.  Figure 44 has a request for 12 hours.  

Additional processors and memory can be requested by adding “–l procs=y” or “–l 

nodes=x:ppn=y.” 

 

Figure 44.   Commands for Loading MATLAB on Hamming. 
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APPENDIX F. SAMPLE HAMMING INPUT CODE 

The following is an example of the script used to run SPPARKS on Hamming.   

 
#!/bin/bash 
#PBS –j oe 
#PBS –N Sinter_250_5p30 
#PBS –l procs=8 
#PBS –l walltime=12:00:00 
#PBS –l mem=8gb 
#PBS –m be 
# 
source /etc/profile 
module load compile/gcc mpi/openmpi 
mpirun .spk_Hamming < ./input_250_5p30.sinter 2>&1… 
 >./sinter_250_5p30.txt 
 

Table 3 lists the descriptions of each of the options in the above code. 

 

Option Description 

#PBS –j oe 
Join option that merges the standard error stream 
with the standard output stream of the job. 

#PBS –N myJob 
Assigns a job name.  The default is the name of PBS 
job script. 

#PBS –l procs=x 
The number of processors.  Can also request a 
number of nodes and processors per node:              
#PBS –l nodes=x:ppn=y. 

#PBS –l 
walltime=12:00:00 

The maximum wall-clock time during which the job 
can run. 

#PBS –l mem=8gb The maximum memory the job can utilize. 

#PBS –m be 
Sends an e-mail to the user when the job begins and 
ends. 

Table 3.   Hamming Input Code Common Commands. 

Once the input file is written and the simulation is ready to run, the following is 

typed on the command line to initiate the simulation (Figure 45). 
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Figure 45.   SPPARKS Simulation Initiation Command in Hamming. 
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APPENDIX G. COMMON HAMMING COMMANDS 

The “qstat” command (Figure 46) is used to list the status of the jobs in 

Hamming.  This command prints a table to the screen containing the job ID, name of the 

simulation, user, the computer time, status (run=R, Q=queue, C=complete, E=error) and 

duration of simulation (long > 48 hours, medium = 24–48 hours, short = 2–24 hours, and 

tiny < 2hours).  

 

Figure 46.   Job Stats on Hamming. 

Other commands that can be used are: 

 a. qstat –a – This command lists additional information about the 

jobs such as number of nodes, number of processors, memory allocation, requested run 

time, and actual run time. 

b. qstat –f 147602 – This command lists all the information for 

the job including the actual memory used, specific processors being used, compute time, 

and walltime. 

c. qdel 147602 – This command will delete the job from 

Hamming. 
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d. vi filename – This command allows the user to edit files in 

the vi editor of Hamming.  It is useful to edit files too large to open with other 

applications.  The following commands are useful in the vi editor: 

Command Description 

:w Writes the file to Hamming. 

:q Exits the file after saving. 

:q! Exits the file without saving. 

:0 Moves the cursor to the top line of the file. 

:line number Moves the curser to the specified line in the file. 

Table 4.   Common Hamming vi Editor Commands. 
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APPENDIX H. SIMULATION TIME VERSUS PROCESSORS 

 

Table 5.   Processors Versus Simulation Time for Sintering. 

Run Processors MCS Sweeps Clusters N R Total Sites 
Memory Memory/ 

(GB) Processor 

6 35,000 10,000 210 74,404.8 32.6371 15,625,000 4.899 0.8165 

8 35,000 10,000 214 73,014.0 32.4512 15,625,000 5.991 0.7489 

10 35,000 10,000 237 65,928.3 33.0723 15,625,000 6.253 0.6253 

12 35,000 10,000 213 73,356.8 32.1083 15,625,000 6.387 0.5323 
1 

14 35,000 10,000 247 63,259.1 31.6558 15,625,000 6.565 0.4689 

16 35,000 10,000 226 69,137.2 33.0697 15,625,000 6.783 0.4239 

18 35,000 10,000 215 72,674.4 33.5101 15,625,000 6.945 0.3858 

20 35,000 10,000 225 69,444.4 32.0559 15,625,000 7.090 0.3545 

6 35,000 10,000 210 74,404.8 32.6371 15,625,000 5.076 0.8460 

8 35,000 10,000 214 73,014.0 32.4512 15,625,000 5.121 0.6401 

10 35,000 10,000 237 65,928.3 33.0723 15,625,000 5.314 0.5314 

12 35,000 10,000 213 73,356.8 32.1083 15,625,000 6.170 0.5142 
2 

14 35,000 10,000 247 63,259.1 31.6558 15,625,000 6.569 0.4692 

16 35,000 10,000 226 69,137.2 33.0697 15,625,000 6.711 0.4194 

18 35,000 10,000 215 72,674.4 33.5101 15,625,000 5.975 0.3319 

20 35,000 10,000 225 69,444.4 32.0559 15,625,000 6.451 0.3226 

Solve Ti me Update Comm Output App other Total 
Run Processors 

(sec) (sec) (sec) (sec) (sec) (sec) (sec) 

6 5,979.58 0.00 675.29 1,433.87 0.05 0.05 8,088.8 

8 4,406. 31 0.00 1,129.31 1,214.79 0.07 0.06 6,750.5 

10 3,519.41 0.00 1,145.44 1,062.48 0.07 0.07 5,727.5 

12 2,827. 73 0.00 1,592.03 1,038.17 0.06 0.05 5,458.0 
1 

14 2,445.165 0.00 1,854.11 1,067.88 0.06 0.20 5,367.9 

16 2,150.14 0.00 1,710.50 1,001.05 0.05 0.06 4,861.8 

18 1,881.44 0.00 1,465.07 873 .88 0.04 0.06 4,220.5 

20 1,605.•63 0.00 728.73 771.62 0.03 0.05 3,106.1 

6 6,095.18 0.00 826.91 1,460.54 0.06 0.06 8,382.8 

8 4,569. 29 0.00 1,004.65 1,193 .84 0.07 0.06 6,767.9 

10 3,508.•68 0.00 827.64 1,032.24 0.06 0.89 5,369.5 

12 2,975.17 0.00 906.40 935.94 0.07 0.11 4,817.7 
2 

14 2,560.07 0.00 1,067.05 989.16 0.06 0.07 4,616.4 

16 2,357.13 0.00 1,229.96 887.53 0.06 0.08 4,474.8 

18 2,069.11 0.00 1,053.02 819.09 0.05 0.07 3,941.3 

20 1,790.:84 0.00 644.33 725.14 0.04 0.06 3,160.4 
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Sites Processors Seed MCS Density Porosity Clusters N R Time Solve Time 

1 0 1.000000 0.000000 14,526,786 1.0756 1.00001 

35,000 1.000000 0.000000 236 66,207.60 32.87130 12,201.5 7,834.51 

70,000 1.000000 0.000000 96 162,760.00 4 0.55640 

28290 0 0.700151 0.299849 10,170,918 1.5362 1.00002 

35,000 0.924437 0.075563 5,456 2,863.82 6 .01788 12,116.0 7,041.97 

70,000 0.929162 0.070838 4,392 3,557.60 5 .80182 

2 0 1.000000 0.000000 14,526,786 1.0756 1.00001 

35,000 1.000000 0.000000 215 72,674.40 33.07570 11,968.5 7,817.05 

70,000 1.000000 0.000000 101 154,703.00 ~9.74340 

42397 0 0.699301 0.300699 10,171,005 1.5623 1.00002 

35,000 0.919045 0.080955 5,372 2,908.60 6 .06417 12,235.7 6,996.49 

70,000 0.924421 0.075579 4,428 3,528.68 5 .76362 

3 0 1.000000 0.000000 14,526,786 1.0756 1.00001 

35,000 1.000000 0.000000 213 73,356.80 34.26120 22,746.3 14,732.70 

70,000 1.000000 0.000000 76 205,592.00 4 7.42130 
15,625,000 8 

52314 0 0.700068 0.299932 10,163,774 1.5373 1.00002 

35,000 0.923149 0.076851 5,445 2,869.61 6 .11378 12,852.6 6,985.70 

70,000 0.928861 0.071139 4,387 3,561.66 5 .73347 

4 0 1.000000 0.000000 14,526,786 1.0756 1.00001 

35,000 1.000000 0.000000 221 70,701.40 33.16030 19,998.7 12,629.70 

70,000 1.000000 0.000000 89 175,562.00 38.01160 

66051 0 0.699549 0.300451 10,165,884 1.5370 1.00002 

35,000 0.923643 0.076357 5,291 2,953.13 6 .10952 22,745.7 12,782.10 

70,000 0.928249 0.071751 4,294 3,638.80 5 .76655 

5 0 1.000000 0.000000 14,526,786 1.0756 1.00001 

35,000 1.000000 0.000000 226 69,137.20 32.95850 19,606.1 9,282.46 

70,000 1.000000 0.000000 83 188,253.00 44.29780 

77958 0 0.700387 0.299613 10,169,919 1.5364 1.00002 

35,000 0.920374 0.079626 5,322 2,935.93 6 .12528 20,501.4 12,312.70 

70,000 0.925522 0.074478 4,400 3,551.14 5 .71982 
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APPENDIX J. POROSITY DATA 

 

Table 7.   SGGS Porosity Simulations Results. 
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